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Abstract: In the context of edge computing environments in general and the metaverse in particular, federated learning (FL) has emerged 
as a distributed machine learning paradigm that allows multiple users to collaborate on training a shared machine learning model locally , 
eliminating the need for uploading raw data to a central server. It is perhaps the only training paradigm that preserves the privacy of user 
data, which is essential for computing environments as personal as the metaverse. However, the original FL architecture proposed is not 
scalable to a large number of user devices in the metaverse community. To mitigate this problem, hierarchical federated learning (HFL) 
has been introduced as a general distributed learning paradigm, inspiring a number of research works. In this paper, we present several 
types of HFL architectures, with a special focus on the three-layer client-edge-cloud HFL architecture, which is most pertinent to the 
metaverse due to its delay-sensitive nature. We also examine works that take advantage of the natural layered organization of three-layer 
client-edge-cloud HFL to tackle some of the most challenging problems in FL within the metaverse. Finally, we outline some future re⁃
search directions of HFL in the metaverse.
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1 Introduction

With the advent of spatial computing and head-
mounted devices such as the Apple Vision Pro, 
the metaverse computing environments have 
quickly become a reality and will become an ev⁃

eryday routine in the future. On the other hand, with the 
breakneck speed at which both computation power and effi⁃
ciency in deep learning have advanced in the past decade 
due to its dramatic success, we almost always need to rely 
upon the power of deep learning models in any distributed 
computing environments, and in the metaverse in particular. 
One major bottleneck in using deep learning in the meta⁃
verse today, however, is the availability of raw data that we 
can use to train a new model or fine-tune a pretrained model.

One of the key contributing factors to the high popularity 
of deep learning lies in its ability to enable the data-driven 
paradigm in algorithm design. Unlike the traditional algo⁃
rithm design paradigm, which relies on human expertise to 
produce hand-crafted logic and heuristics, the data-driven 
paradigm instead focuses on training a model, often as a 
black box, to learn features from a large dataset in order to 

produce desired outputs. This method excels in tasks where 
the desired function is too complex to understand or to con⁃
struct manually; however, at the same time, it often requires 
large volumes of training datasets to work effectively, espe⁃
cially when in metaverse computing environments. This be⁃
comes a significant issue in traditional centralized deep 
learning which requires a server to access data directly, yet 
the data may contain highly sensitive or private information 
that makes it difficult to do so.

Federated learning (FL) is one of the methods that has 
emerged in recent years that aims to solve this exact prob⁃
lem. The term was first introduced in 2017[1] to describe a 
distributed machine learning paradigm that typically in⁃
volves a group of clients and a central server, where each cli⁃
ent trains a deep learning model with its local data, and then 
uploads the model parameters to the central server to aggre⁃
gate into a single global model. This allows the clients to re⁃
tain sensitive data locally, while still contributing to the 
global model by uploading its local model parameters via 
each round of communication with the server. The intrinsic 
protection of privacy offered by this architecture has earned 
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immense popularity in the past few years.
However, the original two-layer client-server architecture 

for federated learning is hardly scalable in the metaverse, 
where scalability is needed the most. One of the key rea⁃
sons why the original architecture is not suitable for the 
metaverse environments is the high bandwidth demand in 
each communication round between the server and clients. 
As the complexity and size of local models increase, the 
number of data each client needs to send to the server also 
increases proportionally. Some popular modern models like 
large language models often have from millions to billions 
of parameters, making the bandwidth consumption of each 
communication round extremely high. The most apparent ef⁃
fect of this is an increased communication time between the 
server and the clients. Sometimes the communication time 
becomes significant enough to warrant a reduction in total 
communication rounds by increasing the number of local 
training rounds. However, this can result in a variety of 
negative effects, including an increase in the total number 
of rounds for the global model to converge or a drop in the 
final model’s accuracy. Moreover, these negative effects of⁃
ten get amplified when the data are non-independently and 
identically distributed (non-IID), which is common in real-
world data[2].

A common approach to increasing scalability in distrib⁃
uted systems in general and the metaverse in particular is 
to add edge servers, especially when the central server 
needs to serve a large number of clients. This type of hier⁃
archical organization pattern can be very frequently ob⁃
served in distributed computing architecture design, such 
as edge computing systems[3] and software-defined net⁃
works (SDN) [4]. We argue that it should be the preferred 
paradigm of distributed learning in the metaverse comput⁃
ing environment as well.

Driven by this intuition, hierarchical federated learning 
(HFL) was introduced around late 2019 to early 2020[5–6], 
along with a modified version of a federated averaging (Fe⁃
dAvg) algorithm, called the hierarchical stochastic gradient 
descent (HSGD) algorithm. Since then, HFL has gained sig⁃
nificant popularity, as shown in Fig. 1. In a three-layer HFL, 
each edge server is assigned to a group of clients local to its 
service area. The clients only communicate with their as⁃
signed edge server, which aggregates the client parameter up⁃
dates to an edge-local model. Each edge server then sends the 
aggregated edge-local model to the central cloud server, which 
further aggregates them to a single global model. Fig. 2 shows 
the architecture of the three-layer HFL versus traditional two-
layer federated learning. Since the original introduction, a 
number of research works[6–13] have emerged to further build 
on the broad concept of HFL.

However, not all works agree on a three-layer hierarchical 
structure. Refs. [14–16] argue that using a cloud server ex⁃
poses the system to a single point of failure; instead, they 

▲ Figure 1. Approximate numbers of publications with “hierarchical 
federated learning” in the title, with results obtained through Google 
Scholar Advanced Search API and may count duplicated publications

▲ Figure 2. Architecture of three-layer hierarchical federated learning 
versus two-layer traditional federated learning
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propose a two-layer system with a group of edge servers com⁃
municating with each other. Refs. [17–18] argue that three 
layers might not be enough in FL and instead propose a 
multi-layered HFL architecture. In this paper, we examine 
all of those variations and propose that the three-layer archi⁃
tecture is typically the best choice in most scenarios, includ⁃
ing the metaverse, compared with other alternatives. In addi⁃
tion, besides scalability, we will also examine some other in⁃
trinsic advantages of HFL over traditional federated learning 
in the metaverse. Ref. [10] uses knowledge distillation and 
meta-learning to take advantage of the naturally clustered 
clients in HFL to improve the training performance on non-
IID training data problems. Other researchers propose to 
capitalize on edge computing power to apply data pruning 
and quantization mechanisms[7].

The overarching objective of this paper is to provide a gen⁃
eral overview of the current landscape of HFL in edge com⁃
puting environments in general and the metaverse comput⁃
ing environments in particular, and to examine the different 
architectures for achieving better scalability with HFL. We 
will also provide some insights on why HFL has the potential 
to become the mainstream framework for next-generation fed⁃
erated learning systems in the metaverse and outline poten⁃
tial research directions.
2 Background

2.1 Federated Averaging Algorithm
The term federated learning was first introduced by 

MCMAHAN et al. in 2017[1], along with the Federated Aver⁃
aging (FedAvg) algorithm which would become the founda⁃
tion for the majority of federated learning algorithms in the 
years that ensue. The intrinsic privacy protection offered by 
FL’s nature of not requiring end devices to directly upload 
data has incentivized heavy research investments and has in⁃
spired a large number of works, including the HFL. We be⁃
gin by examining the FedAvg algorithm to build a foundation 
for later discussions on the hierarchical stochastic gradient 
descent algorithm. 

The FedAvg algorithm can be defined as the following. 
Let us assume that we have a training dataset D = {xi}

|| D

i = 1 that is divided among K clients, each owning a subset of the 
training data Dk∈ D. Each client k also owns a local model 
denoted as fk, which is fully parameterized as a set of 
weights wk. We can calculate the loss value of the local 
model with a loss function lk.Training is performed in a total of T rounds. In each 
round, the FedAvg algorithm can be divided into the local 
training stage and the global aggregation stage. During 
round t, each client k performs m local iterations to minimize 
some average local loss:

min
w

Lk (wt
k, Dk ),

Lk (wt
k, Dk ) = ∑Dk 

i = 1 lk ( xi, wt
k )

|| Dk . (1)
Once the local update is completed, the clients send the 

weights wt
k to the central server for an average aggregation 

via the following equation:

wt + 1 = ∑K
k = 1 || Dk wt

k

|D| . (2)
After aggregation, the global server then broadcasts the 

model to all clients to be used for the next round of training. 
The algorithm terminates after T rounds.
2.2 Definition of Hierarchical Federated Learning

Before we start, it is necessary to define the exact scope of 
our discussion. To do so, we must first find a suitable defini⁃
tion for what is HFL. However, to our best knowledge, de⁃
spite the growing popularity of the topic, there is no existing 
work that adequately defines what HFL is. Fortunately, the 
nomenclature of the term itself is fairly self-explanatory and 
provides a good foundation on which we can easily build our 
own definition. To begin with, as the name indicates, HFL is 
a subset of FL. Hence, it inherits the same set of definitions. 
Same as FL, HFL is also a distributed machine learning 
paradigm that involves multiple data owners and a model 
owner to train a single model, whereby the training data are 
kept strictly private to each data owner. Typically, in tradi⁃
tional FL, each data owner trains its own local model and 
sends the update to a single model owner entity, which aggre⁃
gates all updates to update the target global model. An ex⁃
ample would be the FedAvg algorithm discussed in the previ⁃
ous section. It is worth noting that, from a system organiza⁃
tion perspective, this direct communication between data 
owners and model owners naturally partitions the system 
into two layers.

Instead of directly aggregating all updates from the data 
owners into a global model update, HFL employs multiple in⁃
termediate model aggregators to first aggregate the client up⁃
dates into intermediate updates, and then aggregate these in⁃
termediate updates into the final global update. From a sys⁃
tem organization perspective, these intermediate model ag⁃
gregators typically form one or more extra layers in the sys⁃
tem and introduce a hierarchy to the communication struc⁃
ture, which is responsible for the “hierarchical” part in 
HFL. An example of this would be the Hierarchical Stochas⁃
tic Gradient Descent algorithm introduced in Ref. [5].

To summarize, HFL can be broadly defined as a subset of 
FL that consists of multiple intermediate aggregators be⁃
tween the data owners and the global server.
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3 Progenitors of Hierarchical 
Federated Learning
Although hierarchical federated learning 

has only recently started to gain popularity, 
the concept was first introduced between 
2018 and 2019. Specifically, Refs. [5 – 6, 
19–20] contributed to building the founda⁃
tion for the HFL field, as shown in the de⁃
pendency graph in Fig. 3. We will discuss 
these works in this section. A comparison 
between these works and the rest of the 
works discussed in this paper can be found 
in Table 1.

1) Hierarchical local stochastic gradient 
descent (HLSGD) and hierarchical averag⁃
ing stochastic gradient descent (Hier-
AVG). The very first mentioning of an algo⁃
rithm that can be classified as an example 
of HFL can be found in Ref. [19] by LIN et 
al., which was first available as a preprint 
in 2018 and subsequently published in 
2020. The focus of the paper was comparing 
the performance of FedAvg (referred to as 
local-SGD in the paper) against traditional SGD with large 
mini-batches, and HLSGD was only briefly introduced in the 
appendix.

A simplified version of the HLSGD algorithm is shown in 
Algorithm 1, where we can observe that the algorithm fol⁃
lows our definition of HFL well. Each node in a graphic pro⁃
cessing unit (GPU) block is a data owner, as local data are 
not shared between any two nodes horizontally and are not 
passed to outer loops. On top of the data owners, each 

“block” serves as an intermediate model aggregator, since 

each of them hosts a local-SGD or the FedAvg algorithm 
among the GPU nodes on the block. Finally, a global model 
is obtained by combining the models from the blocks. This 
basic anatomy of the algorithm can be observed across al⁃
most all HFL implementations.

The authors in Ref. [20] proposed an almost identical algo⁃
rithm in early 2019, which is Hier-AVG. The paper was 
theory-focused and provided little consideration for real 
work application scenarios, but it nonetheless contributed to 
building the foundation for HFL by offering a formal math⁃

Architecture
HLSGD

Hier-AVG
HFAVG

Cross-HCN FEEL

Graph-FL

SD-FEEL
Federated fog learning

Multi-level HSGD
F2L-LDK

Number of Layers
3
3
3
3

2

2
N ≥ 2
N ≥ 2

3

Client-Edge-Cloud
Unspecified (but can be)
Unspecified (but can be)

Yes
No (client-edge-edge)

No (client-edge)

No (client-edge)
No (client-edge*N-cloud)

No (client-edge * N-cloud) 
 Yes

Scalability
Unlimited
Unlimited
Unlimited

Limited by the coverage of the macro-
cell base station

Unlimited, but communication costs 
between servers exhibit quadratic 

growth
Unlimited, but may be limited by max 
network span in spare edge networks

Unlimited
Unlimited

Unlimited (supports dynamic edge 
participation)

F2L-LDK: full stack federated learning with label-driven knowledge
FEEL: federated edge learning
FL: federated learning

HCN: heterogeneous cellular network
HFAVG: hierarchical federated averaging algorithm
Hier-AVG: hierarchical averaging stochastic gradient descent

HLSGD: hierarchical local stochastic gradient descent
HSGD: hierarchical stochastic gradient descent
SD: semi-decentralized

▼Table 1. Comparison of different hierarchical federated learning architectures

▲ Figure 3. Citation graph for all the HFL architectures discussed in this paper. An arrow 
pointing from work A to work B means that A appears in B’s citations

Hier-AVG HLSGD HFAVG

F2L-LDK

SD-FEELFederated fog 
learning

Cross-HCN 
FEEL

Multi-level
HSGDGraphFL

F2L-LDK: full stack federated learning with label-driven 
knowledge

FEEL: federated edge learning
FL: federated learning
HCN: heterogeneous cellular network
HFAVG: hierarchical federated averaging algorithm

Hier-AVG: hierarchical averaging stochastic gra⁃
dient descent

HLSGD: hierarchical local stochastic gradient 
descent

HSGD: hierarchical stochastic gradient descent
SD: semi-decentralized
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ematical convergence proof for the algorithm.
Algorithm 1. The hierarchical local-SGD algorithm
Require: K ←total numbers of nodes
Require: K’←numbers of nodes per block
Require: T←rounds of global updates
Require: N←rounds of block updates
Require: M←rounds of local updates
1: Initialize all models to w02: for all K in parallel do:
3:       for t in 0, 1, 2, 3...T do: (Global aggregation)
4:            for n in 0, 1, 2, 3....N do: (Block aggregation)
5:                 for m in 0, 1, 2, 3...M do: (local update)
6:                       Sample minibatch of data;
7:                       Compute the gradient;
8:                       update the local model wl;9:                 end for
10:               enter synchronized mode:
11:               wb←Aggregate all wl in the block;
12:               wl←wb13:               end synchronized mode
14:            end for
15:            enter synchronized mode:
16:            wg←Aggregate all block models wb17:            wg←wg18:            end synchronized mode.
19:       end for
20: end for

2) The hierarchical federated averaging algorithm 
(HFAVG) is introduced by one of the most highly cited pa⁃
pers in the field of HFL, “Client-edge-cloud hierarchical fed⁃
erated learning” by LIU et al., [5] which was first available as 
a preprint in late 2019, and was later published in 2020. Al⁃
though the algorithm itself does not deviate from the HLSGD 
and Hier-AVG algorithms, it is the first to structure the algo⁃
rithm explicitly under a three-layer client-edge-cloud set⁃
ting. The main contribution of the paper is proposing HFL to 
solve one of the most significant challenges in the field of 
FL, especifically federated edge learning (FEEL): scalability.

One of the major bottlenecks in federated learning is the 
communication latency between a server and its clients. A 
solution to this problem is to use a server that is physically 
close to the clients. Following this reasoning, FEEL[21] 
emerged in early 2018. Instead of using a central cloud 
server to facilitate model weight aggregation, FEEL uses a 
single server at the edge of the network, for example, a cellu⁃
lar base station (CBS), to reduce latency. However, this natu⁃
rally limits the scalability of the system as a CBS can only 
serve clients in its physical vicinity, which reduces the total 
size of the available client pool.

HFAVG offers an intuitive solution to bypassing this limi⁃
tation by coordinating multiple edge servers through the 

cloud. The algorithm describes a process of performing Fe⁃
dAvg with each edge server independently for a set number 
of rounds, and then aggregating all the edge models in the 
cloud to obtain a global model. This structure of client-edge-
cloud is intuitive and effective, and makes the application of 
an HFL algorithm a convincing case. This is perhaps the key 
reason why this paper received more popularity despite be⁃
ing released almost a year later than the previously men⁃
tioned papers.

3) Cross heterogeneous cellular network (HCN) FEEL. 
Following the footsteps of HFAVG, another paper “Hierar⁃
chical federated learning across heterogeneous cellular net⁃
works”[6] was released as a preprint in late 2019 and pub⁃
lished in 2020. The paper also aims to solve the problem of 
scalability in federated edge learning. However, instead of 
defining a general framework for using the cloud to orches⁃
trate edge servers, the paper suggests a more specific archi⁃
tecture of using small-cell base stations (SBS) as edge serv⁃
ers, and a dedicated macro-cell base station covering the 
physical area of the SBS as the central server.

The main advantage of this architecture over the more gen⁃
eral client-edge-cloud federated learning is the low commu⁃
nication latency, which is further reflected in the algorithm 
design. The main difference between the HFL algorithms in 
cross HCN FEEL compared with the previous work is the 
lack of the innermost local update loop—each client only 
performs training on one minibatch of data before synchro⁃
nizing with the small-cell base stations. This results in a 
very high rate of synchronization between clients in the same 
group (referred to as local averaging). Moreover, since the 
communication latency between the sub-cell and macro-cell 
base stations is also relatively small compared with a far-
away cloud server, the rate at which the global model can be 
updated per edge model update (referred to as global averag⁃
ing) can also be quite high. Studies on the convergence rate 
of HFL algorithms[5–6, 12, 20] have shown that the rate of local 
averaging for a small number of client groups is the dominat⁃
ing term in the overall convergence rate, calculated as the 
number of local iterations required. Coupled with the al⁃
ready low communication latency from MBS to the clients, in 
theory, cross HCN FEEL offers an extremely fast conver⁃
gence speed compared with client-edge-cloud.

Although this conclusion may seem impressive, it holds 
limited practical value because convergence speed is usu⁃
ally not a major concern in federated learning. On the other 
hand, the trade-off is that the scalability of the overall 
framework is now limited by the coverage of MBS, which 
can be a major limitation. Moreover, using a cloud central 
coordinator has the advantage of easy management and de⁃
ployment, and offers access to vast and flexible computa⁃
tion resources, all of which are important benefits in large-
scale machine learning that cannot be easily enjoyed on a 
macro-cell base station.
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4 Exploring the Organization in Hierarchi⁃
cal Federated Learning
Although three-layer HFL is the simplest and most intui⁃

tive way of organizing an HFL system, a number of works 
have also proposed fewer or more layers to construct an HFL 
system. We study some examples of such architectures and 
compare them with the three-layer alternatives.
4.1 Two-Layer Hierarchical Federated Learning

Sometimes there may not exist a dedicated global model 
aggregator in an HFL architecture that effectively renders 
the corresponding system organization into two layers. In 
this section, we discuss two such architectures and offer an 
argument that such designs can generally be replaced by a 
standard three-layer architecture, which would likely im⁃
proves the system performance.

Introduced by RIZK et al. [14], GraphFL is a special 
privacy-focused HFL architecture. The main goal of 
GraphFL is to minimize the differential privacy risks be⁃
tween groups of clients. To achieve this, the clients are parti⁃
tioned into small groups, each group connected to a dedi⁃
cated intermediate model aggregator server running the Fe⁃
dAvg algorithm. So far, this is identical to standard HFL. 
However, instead of using a global server, the intermediate 
model aggregators run consensus algorithms among them⁃
selves to output a set of global models collectively, such that 
each server obtains its own version of the “global model”. 
The consensus algorithm involves each server sending all 
the other servers the weights of its model along with a small 
noise, and then performing an average aggregation with all 
the received models.

Discussion regarding differential privacy is out of the 
scope of this survey. However, GraphFL nonetheless offers a 
new perspective: how an HFL architecture can be struc⁃
tured. The differential privacy setting does provide a motiva⁃
tion for this graph-like organization. Nevertheless, it is de⁃
batable whether such an architecture is necessary, as we can 
easily employ a centralized cloud server to collect all the 
models from the intermediate model aggregator server, per⁃
form the consensus algorithm, and then send the result mod⁃
els back. Not only will this architecture allow the benefit of 
powerful cloud computing resources, but it can also poten⁃
tially reduce communication latency as client-server commu⁃
nication typically enjoys higher bandwidth compared with 
peer-to-peer communication. Moreover, as we illustrate in 
Fig. 4, it can also eliminate the communication step between 
servers to exchange models, which requires N2 operations be⁃
tween N servers, as opposed to N operations by sending all 
the models to a central server.

Another similar implementation of the two-level HFL algo⁃
rithm is semi-decentralized federated edge learning (SD-
FEEL) [15] by SUN et al. Unlike GraphFL, SD-FEEL is de⁃
signed as a general-purpose federated learning algorithm. In 
this approach, multiple edge servers coordinate clusters of 
client nodes to perform local model updates and intra-
cluster model aggregation. The edge servers then periodi⁃
cally share their updated models with neighboring (one-hop) 
edge servers for inter-cluster model aggregation.

The paper claims that this semi-decentralized training pro⁃
tocol leverages the low communication latency between edge 
servers to facilitate efficient model exchanges, and allows for 
a large number of client nodes to collaborate with minimal 

▲Figure 4. Architecture of graph federated learning versus that of standard three-layer hierarchical federated learning. As we can observe, graph 
federated learning requires N2 communications between the servers in the upper layer, while three-layer hierarchical federated learning only re⁃
quires N

(a) Architecture of graph FL (b) Architecture of three-layer client-edge-cloud FL
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communication cost. However, there are two flaws in this 
claim. First, the low communication costs between edge 
servers are only true when the edge servers are close to 
each other or densely connected by a dedicated network. 
Second, it is very obvious that this algorithm will encounter 
issues when the number of edge servers grows, or when the 
network connecting the edge servers is sparse due to the in⁃
formation propagation delay. For a network where the maxi⁃
mum hop between two servers i, j is N, it would take at least 
N edge server aggregation rounds before i receives j’s up⁃
date from N rounds before, and vice versa, while at that 
time the update may already become stale. An example is 
shown in Fig. 5. There is no clear solution to this problem, 
which makes it questionable if the slightly lower communi⁃
cation cost offered by this method is worth trading off the re⁃
liability and scalability benefits of using a simple three-
layer client-edge-cloud architecture.
4.2 Multi-Layer Hierarchical Federated Learning

On the other end of the spectrum, we have HFL systems 
with multiple layers. They are typically constructed by using 
more than one layer of intermediate aggregators. At first 
glance, this kind of architecture may be intuitive, since of⁃
tentimes networks are multi-layered. However, we present 
two examples and argue that, typically, a three-layer HFL 
system is enough as an alternative to multi-layer HFL, if not 
better, from both a system design perspective and a theoreti⁃
cal perspective.

1) Federated fog learning. An example of an HFL frame⁃
work that involves more than three layers is federated fog 
learning, introduced in Ref. [18]. Fog computing, also known 
as fog networking or fogging, is a distributed computing para⁃
digm that brings computing and storage resources closer to 
the edge of the network in order to 
address the limitations of cloud com⁃
puting in certain scenarios. It in⁃
volves the deployment of small and  
low-power devices at the edge of the 
network, which are capable of per⁃
forming local computing and storage 
tasks and communicating with each 
other and with the cloud. Due to this 
nature, applying HFL in fog sce⁃
narios would likely involve a multi-
layered architecture design natu⁃
rally. Indeed, federated fog learning 
introduces a generalized and multi-
layered HFL architecture with the 
support of device-to-device collab⁃
orative training. An example is 
shown in Fig. 6. The local models 
trained on the bottom-layer IoT de⁃
vices are passed through multiple 

layers of intermediate model aggregator devices before 
reaching the cloud for global aggregation. At each layer, 
models from the same groups in the lower layer are aggre⁃
gated into a model that is reduced in dimensions (sizes) and 
then passed upwards, saving communication costs. Some⁃
times, depending on the use case, devices in the same layer 
may exchange models to perform a horizontal aggregation be⁃
fore sending the models to the upper layer.

The benefit of this architecture cannot counteract the com⁃
plexity it brings. The paper does not offer any concrete algo⁃

▲ Figure 5. An example of a semi-distributed federated edge learning 
system in a ring shaped edge network. The maximum number of hops 
in this network between any two servers is two, which means that, for 
example, it would take at least two rounds of local averaging before A 
receives the model from E, and vice versa

▲ Figure 6. Architecture of federated fog learning. The nodes enclosed in horizontal boxes perform 
peer-to-peer horizontal aggregation between each other before uploading the model to the upper layer
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rithms, nor does it provide proof of convergence for this ar⁃
chitecture, rendering it difficult to properly evaluate this 
new class of multi-layered HFL. However, it is well-known 
that one of the key motivations for FL is data privacy require⁃
ments, that is, training data cannot leave the devices of the 
data owners. However, it is debatable if such a requirement 
applies to small and low-power devices such as IoT sensors 
in a fog computing setting. Most often, a large group of IoT 
devices belong to a single silo (e.g. a factory or a warehouse), 
where the data generated can be collected and processed in 
a single silo server.

Generally, each silo can be seen as one data owner, hence 
there is usually little motivation to keep data private to each 
IoT device within the silo. It is much simpler and easier to 
train a silo model instead and perform cross-silo federated 
learning between different silos. On the other hand, in situa⁃
tions where keeping data private for IoT devices is a hard re⁃
quirement, this federated fog learning system may become 
useful. However, one may also argue that instead of perform⁃
ing intermediate aggregation steps, it can be simpler (and of⁃
ten faster) to just relay the end device models to the closest 
edge server instead.

2) Multi-level HSGD. A more detailed example of multi-
layer HFL is Multi-level HSGD introduced in Ref. [12] by 
WANG et al. This theory-focused paper extends the existing 
HSGD algorithm (the same algorithm as HLSGD, HFAVG, 
etc.) for three-layer HFL to multiple layers, and provides a 
convergence-bound analysis. The multi-level HSGD algo⁃
rithm introduced is the same as the standard three-layer 
HFL algorithms such as HLSGD, except that instead of one 
single layer of intermediate model aggregators, there can 
now be multiple layers.

The paper presents an interesting analysis result, which 
shows that the convergence bounds of multi-level HSGD and 
regular three-layer HSGD are bounded by the same upper 
and lower bounds. In other words, adding more layers cannot 
improve the worst-case or the best-case convergence values 
of the multi-level HSGD algorithm from that of the three-
layer version. What adding more layers does allow is more 
freedom in choosing the hyper parameters controlling the up⁃
stream and downstream aggregation rates for each layer, 
where the upstream aggregation rate refers to the number of 
updates the server in the current layer performs before send⁃
ing the models to the server in the layer above, and down⁃
stream refers to the number of updates the lower layer per⁃
forms before sending the update to the current server. How⁃
ever, whether this increased degree of freedom is beneficial 
is hard to determine, because it is difficult enough to tune 
the single pair of upstream and downstream aggregation 
rates in a three-layer system (i. e. the local aggregation and 
global aggregation rates). This is because these values are 
typically found empirically, requiring a full federated learn⁃
ing session to run from beginning to convergence repeatedly. 

It is easy to imagine that increasing the degree of freedom 
will make it extremely tasking to find an optimal operation 
point for the system.

Hence, one may argue that the fact multi-level HSGD only 
adds more degrees of freedom in choosing upstream and 
downstream aggregation rates without changing the upper 
and lower bounds is an argument against using multi-level 
HSGD as opposed to three-level, in the interest of keeping 
the system simple without significant performance detri⁃
ments.
5 Unique Applications of Client-Edge-Cloud 

Hierarchical Federated Learning
Ever since client-edge-cloud three-layer federated learn⁃

ing design rose to popularity, there have been a number of 
works taking advantage of this architecture and presenting 
interesting solutions to unique challenges in federated learn⁃
ing[8–10]. In this section, we briefly discuss one of these 
works as an example to showcase the advantage of a client-
edge-cloud federated learning architecture.

Full stack federated learning with label-driven knowledge 
distillation (F2L-LDK) is a federated learning method intro⁃
duced in Ref. [10]. The method consists of two parts: a scal⁃
able HFL framework, dubbed full-stack federated learning, 
and a knowledge distillation-based model training scheme 
aimed at solving the non-indentically and independently-
distributed (non-IID) data problem, which is a major chal⁃
lenge in federated learning.

The HFL algorithm of F2L-LDK is almost the same as the 
standard HLSGD or HFAVG algorithm with the exception 
that instead of running another round of FedAvg at the 
global server for all the edge models. It performs a multi-
teacher knowledge distillation instead, where the “teachers” 
are the edge models and the “student” is the output global 
model. On top of offering good performance against non-IID 
data, this design makes the system very flexible to the num⁃
ber of edge servers participating in each round, even allow⁃
ing adding or removing edge servers halfway through the 
training process without significant detriments to the train⁃
ing efficiency and final converged accuracy.

F2L-LDK is a prime example of the advantages of a client-
edge-cloud architecture, as it leverages the flexibility and 
the powerful computing resources available in the cloud to 
perform knowledge distillation, while preserving great scal⁃
ability thanks to the edge-based intermediate-model aggre⁃
gators.
6 Open Challenges and Future Research

Despite its recent rise in popularity, HFL is still a young 
field, especially compared with traditional non-hierarchical 
federated learning. Hence, many research directions mature 
in non-hierarchical settings have yet to be studied under the 
hierarchical scenario. One example is asynchronous feder⁃
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ated learning, which is yet to be extended to a multi-layered 
federated learning setting. Another example is quantization 
and model pruning, which are great methods for reducing 
communication costs in federated learning but have not been 
applied to HFL at the time of writing this paper. Besides the 
two examples, there are many more exciting research topics 
in the field of federated learning that can be further explored 
with HFL architectures.
7 Related Work

7.1 Cross-Silo Federated Learning
There exists a line of work called cross-silo federated 

learning[22], which may bear some similarities to HFL. On 
the surface level, cross-silo learning also tends to follow a 
three-layer organization structure, where the clients are di⁃
vided into groups, each group assigned a server, often called 
a silo or an institution. However, there is a key distinction 
between cross-silo FL and HFL. In cross-silo FL, it is as⁃
sumed that the silos or institutions are capable of accessing 
client data. Moreover, each silo or institution is autonomous, 
often independent of the cloud service provider. In other 
words, each silo or institution can be viewed as a single cli⁃
ent in the sense of traditional two-layer FL. Hence, in this 
work, we do not consider cross-silo FL as HFL.
7.2 Federated Edge Learning

Similar to traditional centralized federated learning, 
FEEL is an approach to machine learning that allows mul⁃
tiple devices to collaborate and learn a shared model. The 
two are different in the location of the model training and the 
data being used.

In a typical centralized federated learning setting, the 
global model aggregator is located in the cloud. In each 
round of communication, clients must directly communicate 
with the cloud, which may result in high communication 
strains. On the other hand, federated edge learning moves 
the global aggregator to the edge server, greatly reducing the 
latency and bandwidth constraints for communication be⁃
tween the clients and the server. However, in doing so, feder⁃
ated edge learning trades off scalability, since an edge 
server is limited to serving clients within its service range. 
In some situations, it may also lose the benefits of flexibility 
and access to an abundance of computing resources, which 
are both features enjoyed by cloud-based FL.
8 Conclusions

In this paper, we provided an original definition for HFL 
in edge computing environments in general, and the meta⁃
verse in particular. We then presented four pieces of early 
prototypes of HFL architectures that initialized this field of 
study, and compared client-edge-edge with client-edge-
cloud architectures from both communication and scalability 

perspectives. The latter architecture would be the most fit⁃
ting alternative for the metaverse. We then explored differ⁃
ent types of HFL based on the number of layers and also pre⁃
sented an argument that these architectures could generally 
be replaced by three-layer client-edge-cloud for better per⁃
formance and simplicity. Next, we demonstrated the advan⁃
tages of the client-edge-cloud architecture in the metaverse, 
showing one example work that studied the utilization of 
multi-teacher knowledge distillation in FL. Finally, we out⁃
lined some potential future research directions in the field of 
HFL, based on existing research in traditional federated 
learning.
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