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1 Introduction

Concurrency control is a critical aspect of parallel and 
distributed computing systems, as it ensures that mul⁃
tiple processes can access shared resources without 
conflicts or performance degradation. One of the ma⁃

jor concerns in concurrency control is the occurrence of dead⁃
locks, which can lead to indefinite delays and inefficient re⁃
source utilization. Deadlocks occur when a set of processes 
are blocked, each waiting for a resource held by another pro⁃
cess in the set. This circular dependency prevents any of the 
processes from making progress, causing a significant impact 
on system performance.

A variety of deadlock detection techniques have been pro⁃
posed in the literature, which can be broadly categorized into 
two categories. Static techniques analyze the system’s source 
code, data structures, or control flow graphs to detect potential 
deadlocks without running the program. Dynamic techniques, 
on the other hand, monitor the system’s execution at runtime 
to detect deadlock occurrences.

Moreover, each tool adopts a different set of strategies, with 
technical details not always fully documented or publicized. 
These factors have resulted in a knowledge gap that hinders 
users of these tools, particularly researchers conducting dead⁃
lock analysis. To narrow this gap, several questions must be 
addressed:

• Q1: How do current static deadlock detection techniques 

improve efficiency and reduce false positives?
• Q2: How do current dynamic deadlock detection tech⁃

niques improve efficiency and reduce false positives?
• Q3: What is the future direction of development for dead⁃

lock detection techniques?
To answer these questions, we present a comprehensive 

analysis of existing deadlock detection techniques, through 
the study of five popular deadlock tools shown in Table 1. As 
the vast majority of deadlock detection tools are not open 
source, we can only discuss these techniques qualitatively and 
answer Q1 and Q2 accordingly. After the above discussion, we 
answer Q3 by providing an outlook and summary for the future 
development of deadlock detection.

By systematically dissecting and evaluating the tools, we 
can make new observations that amend or complement prior 
knowledge. Our major observations are as follows.

• Static deadlock detection typically improves efficiency 

▼Table 1. Groups of deadlock detectors that our study covers
Type
Static

Dynamic

Tools
D4[1]

Peahen[2]

GoodLock[3]

MagicLock[4–5]

Sherlock[6]

Release Date
Jun. 2018
Nov. 2022
Nov. 2005
Mar. 2014
Aug. 2014
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through parallelization, pre-screening, and other methods.
• Dynamic deadlock detection typically improves efficiency 

by merging or deleting states in the lock graph.
• Despite dynamic and static methods generating lock 

traces using completely different approaches, there are com⁃
monalities in the subsequent deadlock detection process.

The remainder of this paper is structured as follows. Section 
2 provides a brief background on deadlocks and deadlock de⁃
tection. Sections 3 and 4 present a comprehensive analysis of 
current static and dynamic deadlock detection techniques, us⁃
ing a selection of tools as examples. Section 5 summarizes and 
compares the aforementioned tools. The future direction of de⁃
velopment for deadlock detection techniques is discussed in 
Section 6. Section 7 concludes the paper.
2 Background: Deadlock and Defense

2.1 Deadlock
A deadlock is a state in which each member of a group is 

waiting for another member, including itself, to take action[7]. 
The occurrence of a deadlock requires the satisfaction of the 
following four necessary conditions[8].

• Mutual-exclusion: Each lock object can only be owned by 
one thread.

• Wait-for: A thread does not release the lock object it has 
acquired while waiting to acquire another lock object.

• No-preemption: A thread cannot seize the lock object of 
another thread.

• Circular-wait: Each thread holds one or more lock objects 
while simultaneously requesting lock objects that other 
threads have already acquired.

More specifically, for the abstract model of non-reentrant 
locks L1 and L2, and threads T1 and T2, the following two dead⁃
lock situations exist: When T1 holds L1 and is waiting for T1 to 
release L1 (e.g. T1 locks L1 twice). When T1 is waiting for T2 to 
release L1, T2 is also waiting for T1 to release L1.In order to deal with deadlocks in concurrent systems, there 
are generally three preventive measures[9]:

• Deadlock prevention: breaking one of the four conditions 
mentioned earlier to prevent the occurrence of a deadlock;

• Deadlock avoidance: dynamically detecting the possibil⁃
ity of a deadlock and taking appropriate measures to avoid it;

• Deadlock detection: detecting the existence of a deadlock 
and taking appropriate measures to recover from it.
2.2 Deadlock Prevention

The objective of deadlock prevention is to ensure that dead⁃
locks do not happen by breaking the necessary conditions for 
system deadlocks. As recommended by HAVENDER[10], the 
following approaches effectively negate each of the four re⁃
maining conditions in turn.

1) Mutual-exclusion condition denied. It allows multiple 
processes to access the same resource at the same time. This 

strategy can be applied to read-only data files[11], disks, and 
other software and hardware resources, but it is not always fea⁃
sible because some resources may be inherently non-
shareable.

2) Wait-for condition denied. All resources are allocated 
through a static approach. This means that a process must re⁃
quest all the necessary resources before execution and will 
not begin execution until all the required resources have 
been obtained. This approach is simple to implement but sig⁃
nificantly reduces both resource utilization and language ex⁃
pressiveness. This is because the static allocation of re⁃
sources cannot support runtime features such as recursion 
and polymorphism[12].

3) No-preemption condition denied. When a process re⁃
quests a resource that is currently unavailable, it will be 
blocked until the resource is available. If the process cannot 
acquire the resource after a certain period of time, it will re⁃
lease all resources currently held and restart the request pro⁃
cess. This approach is not always feasible as certain re⁃
sources may inherently be non-preemptible. Currently, this 
strategy is only employed for the allocation of memory and 
processor resources.

4) Circular-wait condition denied. It assigns a unique num⁃
ber to each resource and requires processes to request re⁃
sources in ascending order. This approach is more effective 
and widely used, such as Android[13], compared with the previ⁃
ous deadlock prevention methods.
2.3 Deadlock Avoidance

Deadlock avoidance takes a more proactive approach than 
deadlock prevention, striving to recognize and avoid potential 
deadlocks before they occur. This is typically achieved 
through careful resource allocation and monitoring of the sys⁃
tem state.

The most well-known deadlock avoidance algorithm is the 
Banker’s Algorithm[14], which requires processes to declare 
their maximum resource needs upfront. The algorithm then al⁃
locates resources in a manner that guarantees a safe state, en⁃
suring that no deadlock can occur. However, this approach re⁃
quires accurate resource estimates and may become computa⁃
tionally complex for large-scale systems.

Deadlock avoidance is generally considered more favorable 
than prevention in database systems, as these systems already 
can abort transactions. Although avoidance may result in the 
unnecessary aborting of transactions, it is still preferred over 
prevention.
2.4 Deadlock Detection

Deadlock detection is the process of identifying deadlocks 
in a computing system, either before or during execution. Com⁃
pared with deadlock prevention and avoidance, deadlock de⁃
tection minimizes the need for human intervention in the pro⁃
gram and avoids affecting the program’s performance and 
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sharing capabilities. Due to its high practicality and versatil⁃
ity, deadlock detection technology has been widely researched 
in recent years, and significant progress has been made. 
Therefore, this article focuses on researching and summariz⁃
ing deadlock detection technology.

Deadlock detection techniques can be classified into two 
categories based on whether the program needs to be ex⁃
ecuted: static deadlock detection discussed in Section 3 and 
dynamic deadlock detection discussed in Section 4.
3 Static Deadlock Detection

Static deadlock detection is a technique that can identify 
deadlocks without executing the program[15]. This technique in⁃
volves analyzing the source code or program structure to iden⁃
tify potential deadlocks. In static analysis, detectors track the 
acquired lock objects and those being requested. When circu⁃
lar dependencies between locks result in a deadlock, a bug is 
detected. Techniques such as model checking[16], dataflow 
analysis[17], and control flow analysis[18] can be employed to de⁃
tect deadlock-prone situations. Previous research[1–2, 19–20] 
used static analysis to detect deadlocks from source codes. 
While some promising results have been achieved as de⁃
scribed in the following text, it is still a long way to achieve a 
complete solution to deadlock bugs. For instance, static analy⁃
sis cannot account for dynamic program behavior and static 
detectors often produce many false positives[21].

In the remainder of this section, we discuss two representa⁃
tive static deadlock detectors to illustrate the recent develop⁃
ment direction of static deadlock detection.
3.1 D4

D4 is a fast concurrency analysis framework based on con⁃
current and incremental pointer analysis. By redesigning the 
pointer analysis, correct conclusions can be obtained by only 
re-analyzing the incremental code, which avoids redundant 
computation in traditional whole-program analysis.

The pointer assignment graph (PAG) is a data structure 
used in pointer analysis algorithms to represent the assign⁃
ments and relationships between pointers and objects in a pro⁃
gram. Each program variable corresponds to a node within the 
PAG, and variable assignments are reflected through the cre⁃
ation of one or more edges. The PAG consists of two distinct 
node types: pointer nodes, representing pointer or reference 
variables, and object nodes, representing memory locations or 
objects. Each pointer node is associated with a points-to set 
denoted by pts, which contains the set of object nodes that the 
pointer may point to. Each edge represents a subset constraint 
between the points-to sets, i. e., p → q means pts(p) ⊆ pts(q). 
We consider Fig. 1 as an illustrative example of a PAG, where 
p and q denote pointer nodes, and o1 and o2 represent object 
nodes. In this case, pts(p) consists of {o1}, while pts(q) encom⁃
passes {o1, o2}.The new parallel incremental pointer analysis is mainly 

based on the following properties of the acyclic PAG.
1) Deleting edges property. As shown in Fig. 2, for an ob⁃

ject node o and two pointer nodes p and q in a PAG, if q has 
an incoming neighbor p (i.e., there exists an edge p → q) and 
o ∈ pts(p), o can reach p without going through q.

Based on the properties mentioned above, supposing an edge 
q → p is deleted from PAG and other edges remain unchanged, 
we only need to check the incoming neighbors of p (i.e., the de⁃
leted edge’s destination), which is much faster than traversing 
the whole PAG for checking the path reachability.

2) Propagating changes property. To propagate a change to 
a node, it is sufficient to check the other incoming neighbors 
of the node. If the points-to set of any incoming neighbor con⁃
tains the change, the node can be skipped. Otherwise, the 
change should be applied to the node and propagated further 
to all its outgoing neighbors.

As shown in Fig. 3, for two object nodes o1 and o2, and four 
pointer nodes x, y, z, and w in a PAG, supposing that an edge 
q → p is deleted from PAG and other edges remain un⁃
changed, we only need to check z and w, which are the outgo⁃
ing neighbors of y.

The two theorems above ensure that when a statement is de⁃

▲Figure 1. An example of pointer assignment graph (PAG)

▲Figure 2. Incoming neighbors property

▲Figure 3. Outgoing neighbors property

p= new Object (); // o1
q= new Object (); // o2
q= p;

o1 o2

p q

o p

q

x

o1

o2y

w z
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leted, it is only necessary to check the local neighbors of the 
affected nodes in the PAG to determine the changes in points-
to sets and perform change propagation. This greatly reduces 
the amount of computation required for recomputing points-to 
sets or traversing the entire graph.
3.2 Peahen

Peahen[2] explores a context-reduction approach for fast and 
precise deadlock detection in real-world programs. Traditional 
static deadlock detection techniques first construct a context-
sensitive lock graph based on lockset analysis, and then ana⁃
lyze the lock graph to discover precise deadlock cycles. How⁃
ever, it has been observed that large-scale context-sensitive 
lock calling contexts can cause state space explosion and 
make it difficult to eliminate false positive deadlock cycles. 
To address that problem, Peahen splits the static deadlock de⁃
tection technique into two stages: the context-insensitive lock 
graph construction and three lazy deadlock cycles refinements.

1) Context-insensitive lock graph construction. Refs. [22–
24] build context-sensitive lock graphs including a large scale 
of unnecessarily acquired edges. A context-insensitive lock 
graph with selected acquired edges cloning can simplify dead⁃
lock analysis. Peahen presents an inter-procedural algorithm 
that constructs a context-insensitive lock graph without requir⁃
ing any context analysis. The algorithm then proceeds to clone 
selected multi-thread edges. For example, Fig. 4 shows a pro⁃
gram using nested locks. Thread 1 and thread 2 both run func⁃
tions foo() and bar(). If thread 1 is running at line 09 waiting 
for lock o1 and thread 2 is running at line 16 waiting for lock 
o2, a deadlock problem will occur. Fig. 5 is its lock graph. Pea⁃
hen first adds edges in every function and then builds an intra-
procedural lock graph using the bottom-up dataflow analysis. 
If an acquired edge represents different threads’ lock depen⁃
dencies, it must be cloned and distinguished as different 
thread IDs.

2) Deadlock cycle refinements. To identify deadlock cycles 
precisely and efficiently, Peahen performs the three following 
steps to refine lock graph cycles lazily.

• Single- and multi-threaded cycle computation. Peahen di⁃
vides lock cycles into single-threaded cycles and multi-
threaded cycles. Single-threaded cycles indicate that a lock 
node owns an edge pointing towards itself. Multi-threaded 
cycles are defined in that every cycle edge is owned by differ⁃
ent threads.

• Concurrent cycle computation. At this step, Peahen tries 
to refine multi-threaded cycles to concurrent cycles. Concur⁃
rent cycles must rule out two cases: A thread in the multi-
threaded cycle has been destroyed, or the multi-threaded 
cycle has been guarded by a lock.

• Path-feasible cycle computation. Finally, Peahen per⁃
forms path feasibility analysis on the concurrent cycles using 
the satisfiability modulo theory (SMT) solver. Peahen is the 
first one to introduce path feasibility analysis into deadlock 
cycle refinements.
4 Dynamic Deadlock Detection

Dynamic deadlock detection is a technique that detects 
deadlocks in a multi-threaded program based on the execution 
trace[3]. Most of the dynamic deadlock detection approaches 
map an execution trace to data structures such as lock-order 
graphs, and then the running detection algorithms to identify 
deadlocks. In recent years, dynamic deadlock detection has 
been widely used in the field of software testing (e. g., Good⁃
Lock[3, 25], DeadlockFuzzer[26], MagicLock[4–5], and Sherlock[6]). 
Compared with static deadlock detection, dynamic deadlock 
detection can better obtain happens-before relationships and 
other runtime information in a program. However, these ap⁃
proaches are limited in their ability to detect deadlocks, such 
as the failure to cover all possible program states and the pos⁃
sibility of false positives.

In the remainder of this section, we discuss three represen⁃
tative dynamic deadlock detectors to illustrate the recent de⁃
velopment direction of dynamic deadlock detection.
4.1 GoodLock

GoodLock[3] is a dynamic deadlock detection algorithm ana⁃
lyzing a trace generated from the execution of the program. It 
consists of two main components: trace generation and detec⁃

T2:11: void thread2(){
12:    foo();
13: }
14: void foo(){
15:    lock(v1);16:    lock(v2); // o217:    bar();
18:    unlock(v2);19:    unlock(v1);20: }

T1:01: void thread1(){
02:    fork(t2, thread2);
03:     foo();
04:     join(t2);05: }
06: void bar(){
07:     unlock(v1); // o108:     x++;
09:     lock(v1);10: }

▲Figure 4. Code using non-nested locks

Figure 5. Context-insensitive lock graph

o1

o2

T1 T2 T1T2

o: lock object       T： thread
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tion. First, the program under test is instrumented to record 
synchronization events when executed. The detection algo⁃
rithm analyzes the execution trace and constructs a lock graph 
that identifies potential deadlocks through the presence of 
cycles. Although GoodLock is not sound nor complete, it is an 
improvement on the basic lock graph algorithm[27], which re⁃
duces false positives in the presence of gate locks (a common 
lock taken first by involved threads). The main strategy for re⁃
ducing false positives is described as follows.

• Extended lock graph. Traditional lock graphs can only 
represent partial information about the ordering of lock ac⁃
quisitions by threads. For example, in an abstract model of 
thread T , locks L1 and L2, if there exists a state where thread 
T holds L1 and acquires L2 during execution, then a directed 
edge from L1 to L2 is added to the lock graph, written as L1 → 
L2. Therefore, a cycle can be created in the lock graph 
through any cyclic acquisition of locks, even if the acquisi⁃
tion cannot happen parallelly, leading to false positives. To 
address this problem, GoodLock[3] introduced the concept of 
an extended lock graph. The extended lock graph is an exten⁃
sion of the traditional lock graph that includes more informa⁃
tion about which thread causes the addition of the edge and 
which gate locks are held by that thread when the target lock 
is taken. Based on this extended information, false positives 
caused by single-threaded and guarded cycles can be elimi⁃
nated during the detection phase.

• Segments. As the example in Fig. 6, the algorithm on the 
extended lock graph reports a cycle between threads T1 (lines 
05–06) and T2 (lines 08–09) on locks L1 and L2. However, a 
deadlock is impossible since thread T2 is joined on by the 
main thread in line 03. Therefore, the two code segments, 
lines 05–06 and lines 08–09, can never run in parallel. The 
algorithm to be presented will prevent such cycles from being 
reported by formally introducing such a notion of segments 
that cannot execute in parallel. A new directed segmentation 
graph will record which segments execute before others. The 
lock graph is then extended with extra-label information, 
which specifies what segment locks are acquired in, and the 
validity of a cycle now incorporates a check that the lock ac⁃
quisitions occur in parallel executing segments. Based on this 
extended information, false positives caused by segmented 
cycles can be eliminated during the detection phase.

Apart from the strategies mentioned above, various optimi⁃
zation strategies have also been added to GoodLock’s vari⁃
ants, as described in later sections.
4.2 MagicLock

MagicLock[4–5] is a more efficient variant of GoodLock[3]. 
The two tools share a similar technological approach to dead⁃
lock detection, both consisting of two phases: trace generation 
and detection. In fact, directly checking on the lock order 
graph of GoodLock[3] for a large-scale program is impractical 
due to the huge cost of time. For example, in the ITCAM appli⁃

cation, The authors in Ref. [28] reported a lock order graph 
with over 300 000 nodes and 600 000 edges. The nodes in the 
graph represent the procedures in the program, and the edges 
represent the call relationships between the procedures. Good⁃
Lock spent 48 h and 13.6 GByte memory to traverse it to find 
cycles if they exist[28]. So MagicLock[4] proposed some strate⁃
gies to reduce the size of the lock order graph in the trace gen⁃
eration phase and the time spent on detecting deadlocks. The 
main strategies are described as follows.

• Graph pruning. Previous work has proposed several strate⁃
gies for simplifying states, such as merging the state of 
locks[28]. Although merging locks can reduce the search space, 
all locks that cannot lead to deadlocks are still retained in the 
lock graph, leading to redundant traversal. MagicLock[4] itera⁃
tively removes the lockset and their edges, resulting in a more 
precise lock order graph. The strategy of iteratively removing 
edges is based on the following observation: for a node partici⁃
pating in a potential deadlock cycle, the node must have both 
incoming and outgoing edges. Therefore, during each itera⁃
tion, the edges of nodes that possess solely incoming and out⁃
going edges will be eliminated. As the traditional lock order 
graph example in Fig. 7(a), the algorithm’s first iteration will 
remove the edges pointing to L3 and L5, and the second itera⁃
tion will remove the edge pointing to L4, as indicated by the 
dotted line in Fig. 7(b). Based on this additional information, 
the states that would not cause potential deadlocks are de⁃
leted, which improves the efficiency of the algorithm.

• Thread-specific lock dependency. MagicLock uses a 
thread-specific lock dependency relation denoted by thread-
specific triple Di = t, m, Lt  for each thread. Here, t repre⁃
sents the thread number, m denotes the lock that is being ac⁃
quired by the current statement, and Lt represents the set of 
locks that are currently held by the thread t. This triple cap⁃
tures the dependencies between the locks that a thread holds 
and the locks that it attempts to acquire. Based on the afore⁃

T2:08: synchronized(L2) {09: synchronized(L1) {}10: }

Main:
01: t1 = new T1();02: t1.start();
03: t1.join();
04: new T2().start();
T1:05: synchronized(L1) {06: synchronized(L2) {}07: }

Figur 6. Example program of false positives
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mentioned strategy, MagicLock employs a new depth-first-
search algorithm to traverse Di for each thread ti. This ap⁃
proach differs from the iGoodLock algorithm in Deadlock⁃
Fuzzer[26]. As iGoodLock employs transitive closure for itera⁃
tive cycle detection, a noticeable limitation is that iGoodLock 
has to store all intermediate results, which consumes a lot of 
memory[26].
4.3 Sherlock

Sherlock[6] is a more effective variant of GoodLock[3]. Lever⁃
aging the power of concolic execution, Sherlock exhibits re⁃
markable proficiency in identifying deadlocks after an exten⁃
sive computation of one million steps, a feat beyond the reach 
of conventional technologies, which other existing technolo⁃
gies cannot discover. Sherlock also consists of two phases: pro⁃
ducing deadlock candidates with GoodLock and concolic ex⁃
ecution to drive an execution toward a deadlock candidate. As 
the algorithm for generating candidate deadlocks in GoodLock 
has already been introduced earlier, this section mainly fo⁃
cuses on the concolic execution in Sherlock[6].

Sherlock first produces a set of deadlock candidates using 
GoodLock. Then, it uses concolic execution to search for each 
of the deadlock candidates. The key idea is to turn each 
search for a deadlock into a search for an event sequence 
(schedule) that leads to the deadlock. As a deadlock search ex⁃
ample in Fig. 8, for each schedule that leads to a deadlock, 
Sherlock alternates between the “execute” and “permute” 
steps. The “execute function” attempts to execute a given 
schedule and determine whether it leads to a deadlock. The 

“permute function” permutes a given schedule. The search be⁃
gins with an initial schedule found simply by “InitialRun func⁃
tion”. The search fails if “execute” cannot execute a given 

schedule, “permute” cannot find a better permutation, or the 
search times out. In the following paragraphs, we will briefly 
discuss each of these phases: “InitialRun,” “Execute,” and 

“Permute”.
• “InitialRun function”. The InitialRun function executes 

the program with some particular input and records the sched⁃
ule. For each program, Sherlock uses the predetermined in⁃
puts to execute the program because those inputs are useful 
enough.

• “Execute function”. The arguments of “execute function” 
are a program, a schedule, and a deadlock candidate. The “ex⁃
ecute function” will attempt to execute the given schedule, de⁃
termine whether it leads to a deadlock, and return the input to 
the program that is used to execute the schedule. The imple⁃
mentation of the “execute function” uses concolic execu⁃
tion[29–32] collecting operational information (e. g. assignments 
and conditions), and generate inputs that are more likely to 
reach the specified state for the next running.

• “Permute function”. The arguments of “permute func⁃
tion” are a schedule and a deadlock candidate. The “permute 
function” will attempt to better the given schedule and primar⁃
ily improves SAID et al.’s “permute function”[33]. The “per⁃
mute function” in Sherlock encapsulates the encoding of lock-
order graphs and alias information into constraints. These con⁃
straints are subsequently solved using an SMT solver, while 
satisfying conditions such as happens-before relationships. Fi⁃
nally, the feasible solutions are traversed to discover an opti⁃
mal schedule.
5 Comparative Evaluation

Many existing deadlock detection methods lack open-
source code, and a significant portion of open-source projects 
have low usability due to poor maintenance. Therefore, we pro⁃
vide a qualitative evaluation of these techniques. We evaluate 
these tools from two aspects: scalability and effectiveness. 
Scalability is the property of a system to handle a growing 
amount of work. One definition for software systems specifies 
that this may be done by adding resources to the system. The 
effectiveness is measured from three aspects: false positives, 
false negatives, and detection of new vulnerabilities, as shown 
in Table 2. Finally, we summarize our observations.

▲Figure 8. Sherlock deadlock search

▲Figure 7. Lock order graph example

(a)　Traditional lock order graph

(b)　Precise lock order graph

L1 L2

L3 L4

L5

L1 L2

L3 L4

L5

Initial schedule

Execute

Permute

Permute
Execute

Deadlock schedule
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5.1 Static Deadlock Detection
• Scalability. Previous work[19] focused on whole-program 

analysis and it was difficult to efficiently detect deadlocks. D4 
reduces redundant calculations during the analysis process 
through incremental analysis and further accelerates deadlock 
detection through parallelization. Peahen reduces the over⁃
head of subsequent deadlock detection stages through a fast 
pre-processing phase.

• Effectiveness. D4[1] and Peahen[2] are both unsound and 
incomplete. Peahen is almost sound, aside from a few well-
identified reasonable unsound choices for achieving higher 
precision. There are two sources of unsoundness in our imple⁃
mentations. First, the pointer analysis shares the same un⁃
sound sources as Peahen uses. For instance, it does not cor⁃
rectly handle pointer arithmetic, array accesses, containers, 
etc. Second, the lock graph construction ignores the locks that 
are inside blocks of the assembly code as the prior deadlock 
detectors. The unsoundness of D4 also mainly comes from two 
aspects. Firstly, the imprecision of pointer analysis that re⁃
sults in D4 cannot handle the situation where a lock variable 
may point to multiple objects. Secondly, D4 ignores reflection 
and library functions during the analysis process, leading to 
false negatives. Since Peahen has discovered new deadlock is⁃
sues while D4 only demonstrates the efficiency of a new algo⁃
rithm on the Dacapo benchmark[34] without finding new dead⁃
lock issues, we consider Peahen more effective than D4.

In summary, traditional static program analysis has be⁃
come increasingly difficult to complete within an acceptable 
time frame for most existing programs. Therefore, much of 
the current research focuses on improving deadlock detec⁃
tion efficiency through parallelization, pre-screening, and 
other methods.
5.2 Dynamic Deadlock Detection

• Scalability. Traditional dynamic deadlock detection has 
only limited scalability. To relax the dynamic deadlock detec⁃
tion overhead, many seminal approaches have been proposed. 
The MulticoreSDK[27] firstly groups the locks being held by dif⁃
ferent threads at the same code location in the same group and 
then merges multiple groups into the same group whenever 
they have at least one shared lock to reduce the size of the 
lock order graph. The MagicLock[5] employs an iterative ap⁃
proach to eliminating locks that cannot cause deadlocks from 
the lock order graph. The latest one, AirLock[35], speeds up the 

online cycle discovery by first finding “simple cycles” without 
considering any execution information (e.g., threads) and then 
constructing deadlock cycles by taking full execution informa⁃
tion into account.

• Effectiveness. Most dynamic deadlock detection tech⁃
niques are also unsound and incomplete. Unlike typical fuzz⁃
ing, dynamic deadlock detection usually only relies on lock⁃
traces generated during runtime since it is difficult to produce 
inputs that can reach the deadlock state and verify the actual 
occurrence of deadlocks. An incomplete dynamic deadlock 
may induce false positives due to, for instance, ignoring 
happens-before relations. Thus, Sherlock[6] is integrated with 
other techniques via scheduling a real deadlock and identify⁃
ing and solving execution constraints. DeadlockFuzzer[26] uses 
fuzzing to confirm whether the cycle of locks is a real dead⁃
lock. Similar to static deadlock detection, dynamic deadlock 
detection techniques like MagicLock[5] and AirLock[29] only 
demonstrate their speed and efficiency through evaluation. 
Only Sherlock discovers new deadlock problems through con⁃
colic execution. Therefore, we consider Sherlock more effec⁃
tive than MagicLock and AirLock.

In summary, traditional dynamic program analysis has also 
become increasingly difficult to complete within an acceptable 
time frame for most existing programs. Therefore, much of the 
current research focuses on improving deadlock detection effi⁃
ciency by merging or eliminating states in the lock graph.
6 Future Works

Although significant progress has been made in both static 
and dynamic deadlock detection over the past years to address 
this security challenge, there are still many open and unsolved 
issues.

• Scalability. Due to the rapid expansion of software codes, 
existing deadlock detection tools still struggle to handle proj⁃
ects at the level of millions of lines of code, such as the Linux 
kernel[36] and Firefox[37], within an acceptable range. There⁃
fore, future works should still focus on improving the scalabil⁃
ity of deadlock detection tools.

• Recall. The false negatives of reports are the most serious 
problem of deadlock detection tools. The false negatives of re⁃
ports can cause serious problems, because our ultimate goal is 
to eliminate deadlocks. Existing dynamic deadlock detection 
tools suffer from a significant number of false negatives due to 
their reliance on program execution traces, which makes it 
challenging to achieve high coverage. While static deadlock 
detection tools have fewer false negatives compared with their 
dynamic counterparts, they still have their own limitations in 
terms of false negatives. Therefore, enhancing the coverage of 
both static and dynamic deadlock detection tools remains an 
urgent and unresolved issue.

• Precision. The false positives of reports confuse develop⁃
ers and waste their time. Currently, besides DeadlockFuzzer[26] 
and other tools that report only the deadlocks confirmed by 

▼Table 2. Evaluation results across all vulnerability discovery techniques

Type

Static

Dynamic

Tools
D4

Peahen
GoodLock
MagicLock
Sherlock

Scalability
High
High
Low

Medium
Medium

False 
Positives

True
True
True
True
True

False 
Negatives

True
Almost false

True
True
True

New 
Bugs
False
True
False
False
True
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fuzzing to avoid false positives, all other deadlock detection 
tools suffer from false positives. However, reporting only the 
deadlocks confirmed by fuzzing can lead to a large number of 
false negatives, which is not a sweet spot. Therefore, future 
work should focus on improving the accuracy of deadlock de⁃
tection tools.

• Communication deadlocks. Communication deadlock[38] is 
another kind of deadlock. Traditional deadlock detection only 
models locks and focuses on whether there is a circular “wait-
for” in acquiring the locks. However, communication dead⁃
lock occurs when one or more threads are waiting for certain 
messages/signals from other threads, which are suspended and 
unable to send the required messages/signals or have already 
sent the messages/signals before a waiting thread starts to wait 
for the messages/signals. Due to the diverse and complex char⁃
acteristics of communication deadlocks, compared with re⁃
source deadlocks analysis, there are few achievements in 
static and dynamic detection of communication deadlocks. 
Program analysis for resource deadlocks is still in its early 
stages.
7 Conclusions

In this paper, we present a comprehensive study of dead⁃
lock detection techniques from two perspectives: static and dy⁃
namic. Our research summarizes the different strategies of ex⁃
isting deadlock detection works and qualitatively compares 
their differences. Throughout the study, we derive a group of 
new observations that can complement previous understand⁃
ings and also inspire future directions of deadlock detection.
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