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The rapid evolution of wireless communication tech‑
nologies, particularly with the advent of 5G and the 
impending transition to 6G, has underscored the need 
for innovative strategies to enhance the performance, 

reliability, and efficiency of communication systems. One 
such promising approach gaining significant attention is the 
concept of native intelligence at the physical layer (PHY). 
This forward-thinking concept integrates advanced algorithms 
and AI-driven solutions directly into the physical layer, trans‑
forming the way communication systems are managed and op‑
timized in real time. The incorporation of native intelligence 
at the physical layer offers tremendous potential to meet the 
growing demands of future communication networks. By em‑
bedding artificial intelligence (AI) algorithms into the physical 
layer, these intelligent systems can autonomously adapt to dy‑
namic channel conditions, thereby improving spectral effi‑
ciency, enhancing error correction, and ensuring robust com‑
munication even in highly challenging and fluctuating environ‑
ments. Native intelligence is poised to become a crucial en‑
abler for the advanced features promised by 6G networks, 
such as ultra-reliable low-latency communication, massive 
connectivity, and intelligent wireless ecosystems.

In this special issue, we aim to spotlight the latest advance‑
ment and research development in the field of native intelli‑
gence at the physical layer. We have invited high-quality sub‑

missions that explore the theoretical underpinnings and inno‑
vative use cases of AI in enhancing the physical layer of com‑
munication systems. The call for papers has garnered a series 
of excellent submissions, reflecting the growing interest and 
momentum in this emerging area. Following two rigorous 
rounds of peer review, the following seven papers are pre‑
sented. These papers cover topics such as spatio-temporal 
channel state information (CSI) prediction for massive mul‑
tiple input multiple output (MIMO), reconfigurable intelligent 
surfaces (RIS) -enhanced communication security, AI-based 
physical-layer authentication for 6G, rethinking source-
channel coding, AI-native networks for 6G optimization, de‑
vice activity detection in massive MIMO, and efficient primary 
synchronization signal (PSS) detection using convolutional 
neural networks (CNN), each demonstrating significant ad‑
vancements in performance, security, and efficiency. The pa‑
pers are organized as follows.

The first paper, titled “Efficient Spatio-Temporal Predictive 
Learning for Massive MIMO CSI Prediction”, introduces a novel 
spatio-temporal predictive network (STPNet) that improves CSI 
prediction in massive MIMO systems. The STPNet model inte‑
grates both CSI feedback and prediction modules using deep 
learning techniques to capture spatio-temporal correlations. This 
approach improves the accuracy of CSI prediction, especially in 
scenarios with high mobility or feedback delays, outperforming 
traditional methods under various channel conditions. 

The second paper, titled “RIS-Enabled Simultaneous Trans‑
mission and Key Generation with PPO: Exploring Security 
Boundary of RIS Phase Shift”, investigates the use of RIS to 
enhance both communication security and transmission effi‑
ciency. The paper presents an integrated communication and 
security (ICAS) design that combines simultaneous transmis‑
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sion and key generation (STAG). By optimizing RIS phase 
shifts through a proximal policy optimization (PPO) algorithm. 
The proposed system significantly improves security and con‑
vergence stability, demonstrating a 90% performance improve‑
ment in “one-time pad” communication compared with tradi‑
tional methods. 

The third paper, titled “Endogenous Security Through AI-
Driven Physical-Layer Authentication for Future 6G Net‑
works”, explores the use of AI to enhance physical-layer secu‑
rity for 6G networks. The paper focuses on physical-layer au‑
thentication (PLA), leveraging the unique randomness and 
space-time-frequency characteristics of the wireless channel 
to provide secure identity signatures. The authors propose a 
graph neural network (GNN) -based PLA method that outper‑
forms traditional authentication schemes in terms of accuracy, 
addressing emerging security challenges in 6G networks.

The fourth paper, titled “Separate Source Channel Coding 
Is Still What You Need: An LLM-Based Rethinking”, chal‑
lenges the conventional joint source channel coding (JSCC) 
paradigm and advocates for separate source channel coding 
(SSCC). The authors propose leveraging large language models 
(LLMs) for source coding and error correction code transform‑
ers (ECCT) for channel coding, showing that SSCC offers supe‑
rior performance over JSCC. The paper provides an in-depth 
analysis of the compatibility challenges between semantic 
communication approaches and digital communication sys‑
tems, demonstrating the efficiency of SSCC in modern commu‑
nication contexts.

The fifth paper, titled “Exploration of NWDAF Development 
Architecture for 6G AI-Native Networks”, explores the role of 
AI-native networks in 6G, focusing on the network data analyt‑
ics function (NWDAF). The paper proposes a novel architecture 
that integrates real-time data collection, model training, and AI-
driven decision-making to optimize network resource manage‑
ment. Through a vertical scaling use case on Kubernetes, the 
authors demonstrate the practical benefits of AI in improving 
network management and resource allocation, with the XGBoost 
model showing superior predictive performance.

The sixth paper, titled “Device Activity Detection and 
Channel Estimation Using Score-Based Generative Models in 
Massive MIMO”, addresses the challenge of joint device activ‑
ity detection and channel estimation in massive MIMO sys‑
tems. The authors propose a score-based generative model for 
robust channel estimation, which adapts well to the complex 
and dynamic environments typical of massive MIMO systems. 
Simulation results show exceptional precision in channel esti‑
mation, with errors reduced to as low as −45 dB, and demon‑
strate high accuracy in detecting active devices. This method 
significantly improves the performance of network resource al‑
location and device activity detection in large-scale systems.

The seventh paper, titled “Efficient PSS Detection Algorithm 
Aided by CNN”, proposes a fast PSS detection algorithm based 
on the correlation characteristics of PSS time-domain superposi‑

tion signals. By incorporating CNN to estimate frequency off‑
sets, the paper addresses potential accuracy issues caused by 
these offsets during the PSS detection process. The proposed 
method reduces computational complexity and improves com‑
munication speed, with simulation results demonstrating its ef‑
fectiveness in enhancing PSS detection efficiency.

To conclude, we hope this special issue on native intelli‑
gence at the physical layer serves as a significant step forward 
in integrating intelligent algorithms directly into the physical 
layer of communication systems. Finally, we sincerely express 
our gratitude to all the authors and reviewers for their invalu‑
able contributions, and we trust that the insights and innova‑
tions presented will inspire new directions for research and de‑
velopment in this exciting and evolving field. 
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Abstract: Accurate channel state information (CSI) is crucial for 6G wireless communication systems to accommodate the growing demands 
of mobile broadband services. In massive multiple-input multiple-output (MIMO) systems, traditional CSI feedback approaches face chal‑
lenges such as performance degradation due to feedback delay and channel aging caused by user mobility. To address these issues, we pro‑
pose a novel spatio-temporal predictive network (STPNet) that jointly integrates CSI feedback and prediction modules. STPNet employs 
stacked Inception modules to learn the spatial correlation and temporal evolution of CSI, which captures both the local and the global spatio-
temporal features. In addition, the signal-to-noise ratio (SNR) adaptive module is designed to adapt flexibly to diverse feedback channel condi‑
tions. Simulation results demonstrate that STPNet outperforms existing channel prediction methods under various channel conditions.
Keywords: massive MIMO; deep learning; CSI prediction; CSI feedback

Citation (Format 1): CHENG J M, CHEN W, LI L, et al. Efficient spatio-temporal predictive learning for massive MIMO CSI prediction [J]. 
ZTE Communications, 2025, 23(1): 3–10. DOI: 10.12142/ZTECOM.202501002
Citation (Format 2): J. M. Cheng, W. Chen, L. Li, et al., “Efficient spatio-temporal predictive learning for massive MIMO CSI prediction,” ZTE 
Communications, vol. 23, no. 1, pp. 3–10, Mar. 2025. doi: 10.12142/ZTECOM.202501002.

1 Introduction

Future 6G communication systems are expected to sup‑
port significantly higher demands from mobile broad‑
band services[1]. As a representative 6G scenario, ultra-
massive multiple-input multiple-output (MIMO) sys‑

tems critically depend on real-time, accurate, and reliable 
channel state information (CSI) [2]. In frequency division du‑
plex (FDD) systems, user equipment (UE) estimates downlink 
CSI and feeds it back to the base station (BS) via uplink trans‑
mission. However, the increasing number of antennas has dra‑
matically expanded the feedback overhead, thereby placing a 
substantial burden on limited bandwidth resources. Recently, 
deep learning (DL) techniques have been introduced to com‑
press CSI and reduce feedback overhead[3–4]. Specifically, DL-
based CSI feedback utilizes an encoder to compress the CSI 
into codewords at the UE and a decoder at the BS to recon‑
struct the CSI from these codewords[5]. This approach has been 
demonstrated to outperform traditional codebook-based feed‑
back methods in terms of effectiveness[6]. In Ref. [7], SwinCF‑

Net is proposed for a CSI feedback task, which utilizes the 
Swin Transformer to extract long-range dependency informa‑
tion from CSI.

However, due to changes in the scattering environment and 
user mobility, the channel varies rapidly over time. In mobile 
scenarios, processing delay in the CSI feedback process 
makes the CSI received by the BS outdated, leading to a sig‑
nificant degradation in system performance. The authors in 
Ref. [8] theoretically analyze the impact of CSI delay on the 
channel. To mitigate the performance degradation caused by 
channel aging, accurate and timely CSI prediction becomes in‑
creasingly essential, which leverages the temporal correlation 
between historical CSI and future channel states. Besides, in 
recent years, digital twins have emerged as a revolutionary 
technology for visualizing, predicting, and analyzing the inter‑
actions between digital models and the physical world[9]. The 
design of digital twins relies on the virtual mapping of physi‑
cal products, using real-time data and information from the 
field. High-precision time series prediction of wireless chan‑
nel information in physical entities is crucial to building a 
digital twin environment[10].

Traditional methods for CSI prediction, such as the linear 
extrapolation model[11] and the autoregressive (AR) model[12], 
rely on statistical and mathematical formulations that struggle 
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to capture the dynamic complexity of realistic wireless chan‑
nels. In contrast, DL-based models, with their capacity for cap‑
turing nonlinear relationships and their flexibility in handling 
large datasets, offer a promising alternative. Inspired by the 
great potential of the recurrent neural networks (RNNs) and 
their variants in time series modeling, an RNN-based predic‑
tor[13] and a long short-term memory (LSTM)-based predictor[14] 
have been proposed. In Ref. [15], a transformer-based parallel 
channel prediction model is introduced to accurately predict 
time-varying channels, which avoids the error propagation 
problem in classical sequential prediction methods. Addition‑
ally, the authors in Ref. [16] propose a joint framework for 
channel feedback and prediction, leveraging the convolutional 
LSTM (ConvLSTM) to exploit temporal correlations. However, 
these existing methods primarily focus on the temporal correla‑
tion, while overlooking the array and frequency correlations 
crucial for further improvement.

In this paper, we propose a novel spatio-temporal predic‑
tive network (STPNet) for CSI prediction in massive MIMO 
systems. STPNet employs a joint CSI feedback and predic‑
tion framework, where the feedback network compresses 
and reconstructs CSI while capturing inter-antenna and 
inter-subcarrier correlations. The core prediction network 
consists of several cascaded Inception modules to learn the 
spatio-temporal features from the codewords by group con‑
volutions. Using joint training, STPNet eliminates the error 
propagation issues found in separate module designs. Fur‑
thermore, we introduce a signal-to-noise ratio (SNR) adap‑
tive module to dynamically adjust input tokens according to 
real-time SNR variations, enabling more robust adaptation 
to changing communication conditions. Numerical results 
show that STPNet outperforms other predictive methods 
across diverse channel scenarios.
2 System Model

We consider the downlink of an FDD massive MIMO sys‑
tem with Nt ≫ 1 transmitting antennas at the BS and a single 
receiving antenna at the UE. The 
number of sub-carriers is Nc. The re‑
ceived signal at the n-th subcarrier 
can be expressed as:

yn = hH
n vn xn + zn (1),

where hn ∈ CNt, vn ∈ CNt, xn ∈ C, 
and zn ∈ C denote the channel vec‑
tor, the precoding vector, the trans‑
mitted data symbol and the additive 
noise at the n-th subcarrier, respec‑
tively. The downlink CSI can be de‑
noted by:
H = [ h1,h2,…,hn ]T ∈ Nc × Nt (2).

Since the elements of the channel matrix are complex num‑
bers, the total number of CSI parameters is 2Nc Nt. However, 
as the number of antennas in future massive MIMO systems 
grows, the size of the CSI matrix might exceed the uplink’s 
feedback capacity.

To tackle the challenge of payload size reduction, we imple‑
ment a framework that compresses the channel matrix H into a 
low-dimensional codeword s of size M×1 at the UE, which can 
be formulated as:
s = fen (H ; θen ) (3),

where fen (∙) represents the function of the encoder and θen de‑
notes its parameter. The compression ratio (CR) is defined as 
γ = M

2Nc Nt
. Then, the encoded vector s is transmitted via a 

noisy channel. In our work, we consider the widely used addi‑
tive white Gaussian noise (AWGN) channel. The channel out‑
put vector ŝ received by the BS is expressed as:
ŝ = η ( s, σ ) = s + n (4),

where each component of the noise vector n is independently 
sampled from a Gaussian distribution, i.e., n~N (0, σ2 I ), and 
σ2 is the noise power.

The structure of AI-based CSI feedback is illustrated in 
Fig. 1a. However, in high-speed mobile scenarios, the channel 
matrix varies rapidly over time. Due to the feedback delay and 
channel aging problems, directly feeding back the channel at 
the current slot leads to a mismatch between the feedback 
channel and the actual channel. To address this issue, a CSI 
prediction module is introduced at the BS. Our proposed AI-
based joint CSI feedback and prediction framework, shown in 
Fig. 1b, performs prediction at the codeword level. Let ŝ( t ) and 
s̄( t + 1) denote the codeword of the t-th slot and the predicted 
codeword of the (t+1) -th slot, respectively. We adopt the re‑
ceived historical codewords from the past P slots to simultane‑

Figure 1. (a) Structure of AI-based CSI feedback; (b) Our proposed AI-based joint CSI feedback and 
prediction framework
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ŝ

04



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

CHENG Jiaming, CHEN Wei, LI Lun, AI Bo 

Efficient Spatio-Temporal Predictive Learning for Massive MIMO CSI Prediction   Special Topic

ously predict the future codewords for the next L consecutive 
slots simultaneously, which can be expressed as:

( s̄( t + 1) ,⋯,s̄( t + L ) ) = fpre ( ŝ( t - P + 1) ,⋯,ŝ( t ) ; θpre ) (5),
where fpre (∙) represents the function of the prediction module 
and θpre denotes the corresponding parameter set. Subse‑
quently, the BS reconstructs the channel matrix from the pre‑
dicted future codewords as follows.
H̄ = fde ( s̄ ; θde ) (6),

where fde (∙) represents the function of the decoder and θde de‑
notes the parameter set of the decoder. H̄ is the recovered 
channel matrix.
3 Design of STPNet

3.1 Network Architecture
Compared with simple CSI feedback, joint CSI feedback 

and prediction can more effectively mitigate the distortion 
caused by feedback delays and channel aging. In a separate 
feedback and prediction architecture, each module is opti‑
mized and designed independently, so the local optimum of 
each component may not yield a globally optimal outcome. In 
contrast, the joint architecture employs end-to-end training to 
reduce error propagation between modules, resulting in more 
accurate predicted CSI.

Building on the advantages of the joint feedback and predic‑

tion architecture, we present an overview of our STPNet model 
in Fig. 2a. STPNet consists of a CSI encoder, SNR adaptive 
modules, a CSI prediction module and a CSI decoder. The en‑
coder is used to compress the CSI into codewords and extract 
spatial features of the channel matrix at UE. The CSI predic‑
tion module, serving as the network’s core, operates at the 
codeword level. The prediction module leverages the spatial 
and temporal correlation of historical channel characteristics 
to forecast future codewords. The SNR adaptive modules, inte‑
grated into both the encoder and decoder, dynamically modu‑
late intermediate tokens based on instantaneous channel qual‑
ity. Finally, the decoder aggregates and processes the pre‑
dicted codewords to produce the final CSI output at the BS.

We employ the SwinCFNet architecture to implement the 
CSI encoder and decoder within STPNet. Built upon the 
Swin Transformer, SwinCFNet delivers superior performance 
in CSI feedback tasks. First, it effectively reduces feedback 
data while aggregating spatial-frequency domain CSI fea‑
tures to support the prediction module. Second, this design 
captures long-range dependencies, exploiting both inter-
frequency and inter-antenna correlations within the channel 
matrix, ultimately enhancing the accuracy of the predicted 
output. Ref. [7] presents a detailed description of the 
SwinCFNet architecture.

In the core prediction module, an Inception architecture is 
introduced to learn the temporal evolution by capturing and 
updating spatio-temporal features, as shown in Fig. 2b. Moti‑
vated by Refs. [17] and [18], cascaded Inception blocks are 

Figure 2. Network architecture of STPNet

BS: base station       CSI: channel state information      STPNet: spatio-temporal predictive network      SNR: signal-to-noise ratio        UE: user equipment
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employed. These blocks primarily consist of convolution lay‑
ers with 1×1 kernels, followed by parallel GroupConv2D op‑
erations. The inner structure of Inception is illustrated in Fig. 
2c. Here, the 1×1 Conv2D layer is used to increase the depth 
of the network and enhance representational capacity. To ex‑
tract diverse local patterns, GroupConv2D layers with kernel 
sizes of 3×3, 5×5, 7×7, and 11×11 split the feature channels 
into multiple groups, each capturing different localized fea‑
tures. Due to the complexity of channel conditions, predicting 
future channels is challenging because the locations of useful 
features vary significantly over time. By utilizing a multi-
branch Inception architecture, the cascaded modules extract 
both local and global features from the codewords. In the final 
block, outputs from convolution layers with varying kernel 
sizes are fused through addition, integrating multiple spatio-
temporal CSI features at different scales.

Note that the joint CSI feedback and prediction model is 
trained in an end-to-end manner. Its parameters are updated 
using an adaptive moment estimation (ADAM) optimizer. 
The networks are trained to minimize the difference between 
the predicted and the ground truth CSIs. Consequently, the 
training loss function is defined as the mean square error 
(MSE) expressed as follows.

L (θen,θpre,θde ) = 1
T ∑

i = 1

T ∑
j = 1

L

 H ( t + j )
i - H̄ ( t + j )

i

2 (7),

where T is the number of samples in the training set, and 
the subscript of H denotes the i-th sample in the training 
set. H ( t + j )

i  and H̄ ( t + j )
i  denote actual and predicted CSI at the 

(t+j)-th slot, respectively.
3.2 SNR Adaptive Module

In high-speed mobile scenarios, the uplink feedback chan‑
nel undergoes rapid variations, requiring the end-to-end feed‑
back system to adapt automatically to changing channel condi‑
tions. To address this, we introduce an SNR adaptive module 
(SAM), depicted in Fig. 3. The SAM is designed based on the 
mechanism of channel-wise soft attention[19], which identifies 
channel relationships and generates distinct scaling param‑
eters for different channel states, thereby enhancing or attenu‑
ating their influence on subsequent layers[20]. By dynamically 
adjusting resource allocation strategies based on these varying 
channel states, the system implicitly modulates the source cod‑
ing rates in both the encoder and decoder, ultimately achiev‑
ing higher-quality transmission and CSI reconstruction.

As illustrated in Fig. 3, the SAM consists of three compo‑
nents: 1) SNR semantic extraction, 2) semantic embedding, 
and 3) feature calibration. The channel feature s is first pro‑
cessed by the fully connected (FC) layer and then fed into the 
SAM for modulation.

1) SNR semantic extraction. The uplink channel informa‑
tion SNR is first input into the three FC layers to generate the 

semantic information of the channel state. The first and sec‑
ond FC layers are followed by the Rectified Linear Unit 
(ReLU) and the last FC layer is followed by a sigmoid to re‑
strict the output range to the interval (0, 1) [21]. It transforms 
SNR into an M-dimensional vector vSNR.

2) Semantic embedding. The input channel features and the 
extracted SNR semantic information vSNR are fused and embed‑
ded by the element-wise product. The output will pass through 
the next FC layer and continue to be multiplied by vSNR. Fol‑
lowing three rounds of semantic embedding, it will be restored 
to the same channel dimension as s via the last FC layer, and 
then pass through a sigmoid function to obtain the modulation 
scale factor.

3) Feature calibration. The resulting modulation scale fac‑
tor is subsequently multiplied by the original channel charac‑
teristics to obtain the CSI feature map s'.

The SNR adaptive module integrates the SNR directly into 
the token processing pipeline to compute channel-wise atten‑
tion, enhancing the adaptability of the network in scenarios 
with varying signal conditions[22]. Algorithm 1 summarizes the 
operation process of the proposed SAM.
Algorithm 1. Operation process of SAM
Input: The channel feature s and the uplink channel SNR
Output: The calibrated channel feature s'
1. Upgrade the channel features to M dimensions and get sM2. Extract the SNR semantic vector: vSNR =Sigmoid (W3ReLU(W2ReLU(W1SNR + b1 ) + b2 ) + b3 )
3. Combine features and the SNR semantic vector: output0 = sM∙ vSNR4. For i = 1∶1∶3 do
5.  Embed SNR semantic information in features: output i = (WMioutput i - 1 + bMi )∙ vSNR6. end for
7. Calculate the modulation scale factor: μ =

Sigmoid (WCoutput3 + bC )

Figure 3. Architecture of SAM
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8. Obtain the calibrated channel feature: s' = s∙μ
9. return s'

4 Experimental Results
In this section, we present the numerical results to investi‑

gate the performance of the proposed STPNet design for joint 
CSI feedback and prediction.
4.1 Experiment Settings

The simulation results are based on the clustered delay line 
(CDL) -C channel model and the 3GPP urban macro (UMa) 
channel model[23], respectively. The BS employs a uniform 
rectangular panel array of dual-polarized antennas arranged in 
an 8×2 configuration. The user speed is set to 30 km/h. There 
are Nc = 32 subcarriers with 10 MHz bandwidth. The commu‑
nication frequency f is set as 2 GHz. The lengths of historical 
and predicted CSIs are both set to 5. Table 1 summarizes the 
simulation parameters. The training and testing datasets con‑
tain 10 000 and 2 000 samples, respectively. To enhance 
model generalization, the prediction model is trained using up‑
link channels with SNR values ranging from 1 dB to 20 dB. 
We update the parameters with a constant learning rate of 1 ×
10-3. The batch size and the training epoch are set as 16 and 
100, respectively. To evaluate model effectiveness, we quan‑
tify the accuracy of CSI prediction by using normalized mean 
square error (NMSE) as a quantitative metric. The NMSE is 
defined as:

NMSE = E ( ) H - H̄
2

 H 2 (8),

where H ∈ CL × Nc × Nt denotes the ideal channel for the next L 
slots, and H̄ ∈ CL × Nc × Nt denotes the predicted channel.

Fig. 4a shows a sample from a single BS antenna selected 
for simulation from the CDL-C scenario CSI dataset. The du‑
ration of this particular sample is 10 ms. The time-varying 
nature of the wireless channel is captured by its autocorrela‑
tion function (ACF), as illustrated in Fig. 4b. This second-
order statistic is typically influenced by factors such as the 

propagation geometry, the mobile’s velocity, and the charac‑
teristics of the antennas[24–25]. In this paper, the DL-based 
approach is adopted to learn and capture the spatio-temporal 
correlation of CSI.
4.2 Performance Comparison

We primarily compare our CSI prediction module with 
some existing ones, such as the RNN-based method[13] and the 
LSTM-based method[14]. To ensure a fair comparison, all base‑
line prediction methods are jointly trained with the CSI feed‑
back network. The CSI feedback process is implemented us‑
ing the SwinCFNet architecture with an SNR-adaptive mod‑
ule. Fig. 5 demonstrates the NMSE performance of the pro‑
posed and baseline methods at CR=1/4, 1/8 in the CDL-C 
channel model. The test SNR is set to 20 dB. The performance 
of non-prediction schemes represents the gaps between the re‑
constructed nearest historical CSI and the future CSI, which 
further underscores the importance of channel prediction in 
the feedback process.

Figure 4. A sample from the CDL-C channel model CSI dataset and the 
temporal autocorrelation

(a) A sample of the channels

(b) Temporal autocorrelation
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From both Figs. 5a and 5b, it is seen that the NMSE perfor‑
mance of all evaluated algorithms decreases over time. As il‑
lustrated in Fig. 5, the proposed Inception-based STPNet 
achieves the highest performance in the CDL-C channel. For 
example, when CR is equal to 1/4, STPNet attains NMSE 
gains of 6.79 dB and 2.12 dB over the RNN-based and LSTM-
based methods, respectively, when predicting the channel at 
the second future slot. Furthermore, compared with the non-
prediction scenario, STPNet improves the accuracy of the fifth 
time slot by more than 12 dB at CR = 1/8. Under these set‑
tings, STPNet also achieves an additional 1.43 dB NMSE im‑
provement over the best results of other competing methods.

The improvements of the proposed channel prediction 
scheme in Fig. 5 come from two aspects. First, the traditional 
RNN-based prediction methods operate recursively, using the 
current time slot as input to predict the next. While effective 
for short-term forecasting, this approach often leads to substan‑
tial performance degradation when extrapolating over ex‑
tended future intervals. In contrast, our proposed scheme pre‑

dicts all future channels simultaneously, thereby breaking the 
recursive loop and preventing error accumulation. Second, 
rather than treating CSI as a time series, our method repre‑
sents it as a spatial map, capturing the spatio-temporal correla‑
tions embedded in the data. By leveraging a multi-branch ar‑
chitecture, the Inception-based CSI prediction module effec‑
tively extracts both local and global features from stacks of 
temporal dynamics.

In Fig. 6, we compare the NMSE performance of STPNet and 
other prediction networks with CR=1/4 in the UMa channel 
model generated on QuaDRiGa[26]. The test SNR is set to 20 dB. 
Since the 3GPP UMa model randomly samples channel param‑
eters, the resulting channels exhibit greater randomness and re‑
duced predictability compared with the CDL-C model. Never‑
theless, as shown in Fig. 6, STPNet maintains the state-of-the-
art NMSE performance. Notably, for the prediction of the chan‑
nel at the first future slot, the RNN-based method proves less 
accurate than the non-prediction approach due to the gradient 
vanishing problem. Compared with the non-prediction scheme 
and the LSTM-based method, STPNet achieves improvements 
in NMSE of 80.99% and 32.56%, respectively.

Furthermore, we investigate the performance of joint CSI 
feedback and prediction compared with separate CSI feedback 
and prediction. In the STPNet-separate configuration, CSI feed‑
back and channel prediction networks are trained indepen‑
dently and then evaluated in series. As illustrated in Fig. 7a, 
the joint architecture, STPNet-joint, achieves at least a 2 dB im‑
provement in NMSE over the STPNet-separate configuration, 
demonstrating the effectiveness of joint training. Fig. 7b shows 
the achievable sum-rate performance of different methods. The 
upper bound is attained by the scheme with perfect channel in‑
formation available. We can also observe that STPNet-joint 
could approximate the near-optimal sum-rate performance at‑
tained with perfect channel information. For instance, when pre‑

Figure 5. NMSE performance in the CDL-C channel model with 
CR=1/4 and 1/8

LSTM: long short-term memoryNMSE: normalized mean square error RNN: recurrent neural networkSTPNet: spatio-temporal predictive network

(b) CR=1/8

(a) CR=1/4

LSTM: long short-term memoryNMSE: normalized mean square error RNN: recurrent neural networkSTPNet: spatio-temporal predictive network
Figure 6. NMSE performance in the UMa channel model with CR=1/4
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dicting the channel for the fifth future slot, STPNet-joint 
achieves approximately 96.57% of the sum-rate performance of 
the upper bound. By integrating CSI feedback and prediction, 
the system avoids error propagation between these two cas‑
caded subsystems, thereby enhancing overall accuracy.
5 Conclusions

This paper presents STPNet, an efficient spatio-temporal 
predictive network based on a joint feedback and prediction 
framework. STPNet is designed to address the challenges of 
excessive feedback overhead and dynamic channel conditions 
in massive MIMO systems. The CSI prediction module is 
stacked with a series of Inception modules used for capturing 
both the local and global spatio-temporal features. By leverag‑
ing spatio-temporal features and SNR-aware modulation, 
STPNet achieves outstanding performance in CSI prediction 
accuracy and robustness, significantly outperforming tradi‑

tional methods. Simulation results validate the effectiveness of 
the proposed framework across diverse channel scenarios, 
demonstrating its potential to enhance future wireless commu‑
nication systems. Future work will explore extending the 
model to more complex and dynamic environments, further im‑
proving its adaptability and efficiency.
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1 Introduction

With the advancement of the 6G wireless communi‑
cation, we are gradually moving towards the era of 
comprehensive Internet of Things (IoT). This pro‑
vides more solid technical support for applications 

like smart interaction, industrial control, and remote health‑
care, which requires extremely low latency while ensuring 
high security[1]. However, the widespread access to diversified 
intelligent mobile terminals and the demand for Gbit/s-level 
ultra-high throughput highlight the crucial importance of data 
security, especially in the broadcast wireless channels. Tradi‑
tional key encryption methods may not be able to meet such 
stringent security requirements[2]. Meanwhile, it is necessary 

to meet the requirements for rapid key generation to reduce 
communication latency and ensure key security to prevent 
from cracking by quantum computers. This necessitates an in-
depth exploration of the key distribution mechanism to dis‑
cover the optimal trade-off between latency and security. 
Hence, in the 6G era, constructing a secure and efficient confi‑
dential communication system is urgently demanded.

In recent years, physical layer key generation (PLKG) has 
garnered increasing attention in academics and industry. 
PLKG is based on the physical layer characteristics of wire‑
less environments, including the wireless channels that inher‑
ently possess randomness and reciprocal features. PLKG le‑
verages these characteristics to establish a key generation 
mechanism, thus circumventing the challenges of traditional 
key distribution and update approaches. Typically, PLKG en‑
compasses four steps[3]. First comes channel sounding, where 
the transceiver sends a pilot sequence to detect the channel 
and obtain reciprocal characteristics. Next is the quantization 
step, where the channel reciprocity features are transformed 

This work was supported in part by the National Science Foundation of 
China (NSFC) under Grant No. 62371131, in part by the National Key R&D 
Program of China under Grant No. 2024YFE0200700, and in part by the 
program of Zhishan Young Scholar of Southeast University under Grant 
No. 2242024RCB0030.
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into a binary bit sequence, and this bit sequence is then gener‑
ated as the raw key. Due to issues like quantization accuracy, 
noise, and incomplete synchronization, the original bit se‑
quence might not match properly. The third step is information 
reconciliation, where the error correcting codes are employed 
for correction purposes. Finally, privacy amplification is uti‑
lized, which aims to eliminate the potential risks of information 
leakage within the original bit sequence and generate symmet‑
ric keys to safeguard data security. MAURER[4] first explores 
the problem of generating shared keys through public discus‑
sions when both parties are aware of the relevant random vari‑
ables but do not have an initial shared key. PREMNATH et al. 
evaluate the effectiveness of extracting keys from changes in 
wireless signal strength through actual measurements in Ref. [5]. 
They find that there are some problems with key generation in 
poor scattering environments, e.g., the entropy of the key is rela‑
tively low and the attacker can easily crack the key. An adaptive 
key generation scheme has been proposed to address these is‑
sues. In Ref. [6], LI et al. focus on using principal component 
analysis (PCA) preprocessing to generate highly consistent un‑
correlated keys. However, due to the low-key generation rate in 
static wireless environments like an indoor office, it seriously af‑
fects the key generation rate.

At present, some related studies begin to focus on reconfigu‑
rable intelligent surfaces (RIS) assisted PLKG to improve the 
key generation rate[7]. For example, Ref. [8] proposes a RIS as‑
sisted multi-carrier physical layer key generation framework 
to address the issue of insufficient randomness in wireless 
channels in static environments. Ref. [9] proposes the “Sem‑
Key” scheme, which utilizes the semantic drift phenomenon 
in semantic communication systems combined with RIS assis‑
tance to improve the key generation rate. The advantages and 
feasibility of this scheme have been experimentally verified. 
Ref. [10] proposes a RIS configuration method that utilizes 
channel state information (CSI) to control the activation of spe‑
cific RIS units in the presence of eavesdroppers, thereby in‑
creasing the key capacity. However, the robust security of 6G 
enabled by the the RIS assisted PLKG, i. e, achieving “one-
time pad” communications, still needs further study.

In 6G, the density of IoT devices per square kilometer can 
reach over 10 million. In such massive connection scenarios, 
communication security is extremely vulnerable. Integrated 
communications and security (ICAS) provides a potential solu‑
tion to strong security, which shares communication resources 
and hardware resources and conducts an integrated design of 
communication functions and security functions. Specifically, 
the inherent by-products of communication are utilized to en‑
hance the security abilities; at the same time, the improve‑
ment of security capabilities further ensures communication 
security, thereby enabling communication and security to mu‑
tually benefit and be internally generated with each other[2, 11]. 
Since the ICAS design focuses on real-time extreme security 
communication, artificial intelligence (AI) is an important en‑

dogenous power, especially deep learning (DL) and reinforce‑
ment learning (RL). In dynamic wireless environments, GAO 
et al. use deep Q-network (DQN) to optimize the RIS phase 
shift and for the first time demonstrate that the simultaneous 
transmission and key generation (STAG) can achieve “one-time 
pad” communication[11]. However, the existing DQN-based 
STAG method has some drawbacks, including the dimension 
explosion problem when the action space is large, and poor per‑
formance when there are many RIS units or high phase shift 
resolution. On the other hand, with the improvement of the RIS 
hardware manufacturing process, the high performance RIS 
with 3 bits or higher resolution, e.g., 360 degree RIS, has gradu‑
ally emerged[12]. Motivated by these considerations, we propose 
a proximal policy optimization (PPO) based STAG method to 
study the security boundary of RIS phase shifts for STAG. The 
main contributions are summarized as follows.

• To improve the convergence stability of the deep rein‑
forcement learning (DRL) -based STKG, a PPO-based STAG 
method is proposed. In particular, the RIS-assisted key gen‑
eration rate is derived and the triple of the DRL, i.e., action, 
state, and reward, with respect to the STAG, is constructed.

• The continuous phase shift of RIS is optimized to explore 
the security boundary of RIS phase shifts. The upper bound of 
the RIS phase shifting capability for STAG is evaluated via 
the simulation. The continuous RIS phase shift yields over 5% 
higher reward than the 1-bit discrete RIS phase shift when the 
proposed algorithm converges.

• The simulation result shows that the “one-time pad” com‑
munication can be achieved by assigning suitable weight fac‑
tors to STAG. Compared with the DQN-based method, the pro‑
posed PPO-based STAG method can obtain 90% performance 
improvement in “one-time pad” communication.
2 System Model

In Fig. 1, we consider a static RIS-assisted key generation 
scenario, which consists of four components: the legitimate 
transmitter and the receiver, namely Alice and Bob, the RIS, 

Figure 1. System model schematic diagram
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and the malicious eavesdropper Eve. To simplify the analysis, 
we assume that Eve is in the middle of the legitimate users. 
Each participant is location-fixed and equipped with one an‑
tenna, and RIS has N reflection units.
2.1 Channel Model

The transmitter and the receiver intend to simultaneously 
generate keys and transmitted data, and the eavesdropper pas‑
sively eavesdrops on the channel information. The signal re‑
ceived by Alice can be represented as:

ra =        ( )hT
brΦhra + hba

hbra

sb + na (1),

where hbr∈ CN × 1 is the channel from Bob to RIS, hra∈ C1 × N is 
the channel from RIS to Alice, hba ∈ C  is the direct channel 
from Bob to Alice, hbra is the equivalent channel, sb is the 
transmission signal of Bob, Φ = diag [ α1 ejθ1,α2 ejθ2,…,αN ejθN ] 
is the phase-shift matrix of RIS with ϕn,n = αn ejθn, αn =
1, θn ∈ [ 0, 2π), n = 1,2,…,N, and na is the channel noise fol‑
lowing complex Gaussian distribution with zero mean and σ2 
variance. 

Similarly, we can obtain the received signals of Bob and Eve, 
respectively, which is given by Eqs. (2) and (3). Therein, 
hre∈ CN × 1 is the channel from RIS to Eve, hae ∈ CN × 1 is the 
channel from Alice to Eve, and na and ne are the channel noise.

rb =        ( )hT
arΦhrb + hab

harb

sa + nb (2),

re =        ( )hT
arΦhre + hae

hare

sa + ne (3).

2.2 Channel Estimation
During the coherent time, Alice exchanges the pilot signal 

with Bob for channel estimation. Let Alice be the communica‑
tion initiator, and Bob estimates CSI through least squares.*

ĥarb = hT
arΦhrb + hab + n0 sp*

a (4),
where sp

a is the pilot signal from Alice to Bob and the pilot sig‑
nal satisfies sp

a sp*
a = 1; the channel estimation error is n0 sp*

a . 
Next, symmetric keys are generated through quantization, in‑
formation reconciliation and privacy amplification[13]. Since 
these steps are not the key point of this paper, they are not 
elaborated on any further.
2.3 Key Generation Rate

The mutual information between the channel observations 

of the legitimate parties is an important factor in determining 
the key generation rate. Due to quantization error in bit repre‑
sentation, we consider the mutual information as the upper 
bound of the key generation rate, which is the mutual informa‑
tion of CSI under Eve’s observation. With the eavesdropper 
Eve, the key generation rate can be formulated as[14]:
Rkey = 1

T I ( ĥarb ; ĥbra|ĥare ) =
1
T [ H ( ĥarb|ĥare ) - H ( ĥarb|ĥbra,ĥare ) ] =
1
T log2

det ( Rae ) det ( Rbe )
det ( Re ) det ( Rabe )                                                            (5),

where det ( R ) is the matrix determinant, while Rae, Rbe, Re,  and Rabe are the covariance matrices. T represents the observa‑
tion time. Specifically, the covariance matrix is as follows：

RA1,…, An
= E

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úa1a*1 ⋯ a1a*
n⋮ ⋱ ⋮

ana*1 ⋯ ana*
n

(6).

The key rate is expressed in Eq. (7), where  ⋅  is the Euclid‑
ian norm operator. E represents mathematical expectation. For 
convenience, we simplify the variance of the noise to 1. Thus, 
we can obtain the key generation rate, which is expressed in 
Eq. (8).
Rkey =
log2( ( ( Ra + σ2 ) ( Re + σ2 ) - ‖Rae‖2 )2

( Re + σ2 ) ( (2Ra σ2 + σ4 ) ( Re + σ2 ) - 2σ2‖Rae‖2 ) ) (7),

Rkey = log2( ( ( Ra + 1) ( Re + 1) - ‖Rae‖2 )2

( Re + 1) ((2Ra + 1) ( Re + σ2 ) - 2‖Rae‖2 ) ) (8).

According to Shannon’s formula, the maximum channel ca‑
pacity is the theoretical maximum transmission rate, which can 
be obtained by calculating the signal-to-noise ratio (SNR). Thus, 
we can obtain the ergodic data transmission rate at Alice as:
Rdata = B log2(1 + E‖hT

brΦhra + hba‖2 ) (9),
where B is the signal bandwidth.
3 Problem Formulation and Proposed Solution

3.1 Problem Formulation
We consider jointly optimizing the key generation rate and 

data transmission rate, that is, to ensure the data transmission 

* The channel estimation considered in this paper has no error, and the analysis is based on perfect channel state information. The research based on imperfect channel state information 
will be carried out in the future.
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rate reaches a high level while maximizing the key generation 
rate to enhance the confidentiality of wireless communication. 
For the trade-off between the key generation rate and the data 
transmission rate, we make decisions based on the specific ap‑
plication scenarios, such as in real-time communication priori‑
tized applications about the voice calls and the video confer‑
ences, which increases the weight of the data transmission 
rate and appropriately reduces the key generation rate. For fi‑
nancial transaction scenarios and military communication sce‑
narios that focus on high security and confidentiality, we in‑
crease the weight of the key generation rate accordingly. In 
short, we can first evaluate the security and the quality of ser‑
vice (QoS) requirements of the scenario and allocate corre‑
sponding weight reasonably to the specific scenario. There‑
fore, we can formulate the optimization problem as
P:  max wdRdata + wkRkeys.t.   0 ≤ θn < 2π,∀n ∈ {1,…,N }
|ϕn,n| = 1 (10),

where wd ∈ [ 0,1 ] , wk = 1 - wd ∈ [ 0,1 ] is the weight that bal‑
ances the priority level of the key generation rate and data 
transmission, n represents the number of reflection units of 
RIS, θn represents the phase shift unit of RIS, and |ϕn,n| is the 
phase-shift unit of RIS with a constant modulus constraint.

Due to the non-convex nature of the optimization problem, it 
is hard for the traditional convex optimization to obtain the opti‑
mal solution in real-time. Considering the dynamic wireless en‑
vironments, we construct the time series of the dynamic chan‑
nel as a Markov decision process. This indicates that DRL is a 
potent instrument for resolving the Markov decision process. 
PPO is a model-free reinforcement learning algorithm, which 
belongs to the family of strategy gradient algorithms. It is 
mainly used to optimize the strategy network so that the agents 
can take optimal actions in the environment to maximize the cu‑
mulative rewards. Due to the increasing demand for efficient 
and stable algorithms, PPO has emerged where the action space 
is continuous. It not only performs well in the large dimensional 
action space but also has the advantages of high training effi‑
ciency and easy convergence. Therefore, we use the PPO algo‑
rithm to jointly optimize the transmission rate and the key gen‑
eration rate with the continuous RIS phase shift[15].
3.2 Sample Collection

Firstly, we use the current strategy network to interact with 
the environment and collect a series of state-action-reward 
samples {( si,ai,ri ) }[16]. These samples form an experience re‑
play buffer. Then, the advantage function and target value are 
calculated based on the collected samples, and the state value 
function is estimated to calculate the advantage function 
A( s,a ). Here, we use Monte Carlo estimation to calculate the 
value function, where the advantage function can be calcu‑
lated by subtracting the state value function from the cumula‑

tive reward of the trajectory[17]. For time difference learning, it 
can be denoted as:

A( s,a ) = r + γV ( s') - V ( s) (11),
where r is the instant reward, γ is the discount factor, and s' is 
the next state.
3.3 Strategy Network Update

In this step, the gradient descent algorithm is employed to 
minimize the loss function and optimize the policy network. 
The loss function LCLIP (θ ) is calculated to obtain the gradient 
of the policy network parameter. Then, the gradient descent is 
used to update via the formula θ = θ - β∇θ LCLIP (θ ), where β 
represents the learning rate[18]. The specific settings of the 
state space, the action space, and the reward function in the 
Markov decision process are as follows.

State: The state space is defined as the CSI of the communi‑
cation environment observed by Alice. Therefore, at time step 
i, the state is denoted as:

si = { }hi
bar,Φi - 1,hi

bae,Φi - 1 (12).
The state information is the basis for intelligent agents to 

make decisions.
Action: Since we train the network by continuously adjust‑

ing the phase shift of RIS, the action space at time step i can 
be represented as:

ai = {Φi } (13),
where Φ = diag [ α1 ejθ1, α2 ejθ2,…, αN ejθN ] and the phase shift of 
RIS is θN ∈ [ 0, 2π).

Reward: As the formulated optimization problem, the re‑
ward function can be established in the form of the optimiza‑
tion objective, which can be expressed as:

r = wdRdata + wkRkey (14).

3.4 Computational Complexity
The computational complexity of the proposed algorithm in‑

cludes training complexity and deployment complexity, which 
will be analyzed as follows.

Training complexity: Firstly, we calculate the computa‑
tional complexity of the activation layers. The computational 
complexity of the ReLU layer is “1”, that of the sigmoid layer 
is “2”, and that of the tanh layer is “2”. Assume that the total 
number of nodes in the state normalization layer, ReLU layer, 
sigmoid layer, and tanh layer are |S|,nr,ns, and nt. Thus, the 
training complexity for node computation is O (|S| + nr + 2ns +
2nt ). Furthermore, we assume that both the evaluated network 
and the target network consist of L fully connected layers and 
the l-th layer has nl nodes. The training complexity of one for‑
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ward propagation and two backward propagations can be calcu‑
lated by O ( )∑

l = 0

L - 13nlnl + 1 . In the PPO algorithm, multiple trajec‑
tories need to be sampled from the environment for learning. 
Supposing that the trajectories sample is N and the length of 
each trajectory is T, the complexity of the sampling and the up‑
date process can be expressed as O ( )N ⋅ T ⋅ ( )3∑

l = 0

L - 1
nl nl + 1 . 

The total complexity of the PPO algorithm in the training phase 
is O ( )K ⋅ N ⋅ T ⋅ ( )|S| + nr + 2ns + 2nt + 3∑

l = 0

L - 1
nl nl + 1 , 

where  K represents the total number of iterations.
Deployment complexity: Since we only use the policy net‑

work πθ for action selection, sampling and update operations 
are not involved. Therefore, only the computational complexity 
of state normalization and one forward propagation needs to be 
considered. Similar to the above analysis, the complexity of the 
deployment phase can be expressed as O ( )∑

l = 0

L - 1
nl nl + 1 + O (|S|).

4 Simulation Results
In terms of weight factors, the weights of both the data trans‑

mission rate wd and the key generation rate wk are set to 0.5, 
which means that the two tasks have equal priority. The learn‑
ing rate β is set to 0.000 3. This small value ensures that the 
model parameter updates are relatively stable during the train‑
ing process, thereby reducing the risk of missing the optimal 
solution or making the training diverge due to overly large up‑
date steps. The discount factor γ is set to 0.99, indicating that 
the agent places great emphasis on relatively long-term re‑
turns. The batch size batch_size is set to 64. When parameters 
are updated each time, 64 samples are extracted from the 
sample data for calculation. This value can maintain a reason‑
able computational efficiency while taking into account a cer‑
tain degree of stability in gradient estimation. In the general‑
ized advantage estimation, the parameter gae_λ is set to 0.95, 
biasing the advantage estimation towards prioritizing the long-
term temporal difference error information.

The DQN-based STAG method is proposed to optimize the 
key generation rate[11]. However, this method makes it difficult 
to handle continuous action space problems, thereby leading 
to a dimensional disaster for the large action space or the loss 
of some action information. The proposed PPO-based STAG 
method can effectively handle continuous action space and 
the convergence is stable. Thus, we use the DQN-based 
method as a benchmark and study the security boundary of 
the RIS phase shift for STAG with the PPO-based method.

Specifically, the DQN algorithm selects (discrete) phase shift 
values for the 8 elements in the action space of RIS from 
[ 0, 2π), and the resolution of the RIS phase-shift is 1 bit. The 
PPO-based STAG method selects continuous phase shift values 

for the 8 elements in the continuous action space of RIS from 
[ 0, 2π). Fig. 2 shows although the DQN-based STAG method 
converges slightly faster than the PPO-based method, the re‑
ward of the former is unstable and not as high as the reward of 
the latter. The reward of PPO can reach 6.0, while DQN is only 
5.7, which has improved the reward by more than 5%. To ana‑
lyze the optimal solution, we use an exhaustive search optimiza‑
tion method and compare it with the optimization results of the 
PPO algorithm. In Fig. 2, the optimization results of the PPO al‑
gorithm are very close to the optimal result of the exhaustive 
search optimization, which is demonstrated to be optimally 
achieved in dynamic wireless environments.

To prove the convergence stability of the PPO-based STAG 
method in large dimensional action space, we explore the rela‑
tionship between the reward and the number of RIS reflection 
units with the continuous phase shift in Fig. 3. When the num‑
ber of RIS reflection units increases, the key generation rate 
increases obviously. When the number of RIS reflection units 
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is 32, the reward is close to 10, which is twice as much as 
when the number of RIS reflection units is 8. Specifically, as 
the number of reflection units rises, the channel gain in‑
creases with the assistance of the RIS, thereby improving the 
STAG performance.

To explore the security boundary of the RIS phase shift and 
validate the effect of the “one-time pad” with STAG, we study 
the optimal transmission rate and key generation rate in differ‑
ent weights. Fig. 4 illustrates the relationship between weight 
and the rate change based on the PPO algorithm. It can be 
found that as the weight w_k increases, the data transmission 
rate decreases and the key generation rate increases. The 
PPO-based STAG method outperforms the DQN-based 
method both in key generation rate and the data transmission 
rate. Importantly, the key generation rate and the data genera‑
tion rate are equal for the proposed PPO-based STAG and the 
DQN-based STAG when the weight is about 0.675 and 0.92, 
respectively. It suggests that this weight can achieve “one-
time pad” communication via STAG design. Specifically, 
there is about 90% performance improvement for “one-time 
pad” communication than that of DQN-based STAG method, 
which shows the security boundary of the RIS phase shift.
5 Conclusions

In this paper, we study the potential of ICAS to attain per‑
fectly secure communication with the presence of the eaves‑
dropper via the STAG design. Specifically, we consider the dy‑
namic wireless environments and propose a policy gradient al‑
gorithm based on PPO, which is to improve the convergence 

stability of STAG in large-scale action space and explore the 
security boundary of the RIS phase shift. The simulation re‑
sults indicate that the proposed PPO-based STAG method has 
a better performance than the DQN-based STAG method and 
approaches the optimal exhaustive search, which shows the se‑
curity boundary of the RIS phase shift. By setting a suitable 
weight to balance the data transmission rate and communica‑
tion security, “one-time pad” communication can be achieved.
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1 Introduction

1.1 Background

To further accelerate the realization of the Internet of Ev‑
erything, 6G mobile networks will integrate a multitude 
of enabling technologies, with a goal of achieving exten‑
sive coverage, high bandwidth, low latency, and highly 

reliable communications[1]. Currently, the official launch of the 
first 6G standard project by the 3rd Generation Partnership 
Project (3GPP) marks the transition of 6G from technical pre-
research to the standardization phase, signaling the start of a 
critical period for blueprint formulation. However, as an emerg‑
ing technology, 6G will introduce more complex security chal‑
lenges[2–3]. The future three-dimensional and fully integrated 
communication network, characterized by diverse, resilient, and 
distributed topologies, involves numerous heterogeneous nodes, 
dynamic resource management, and ubiquitous diverse connec‑
tions, thereby increasing network complexity and security 
risks[4–5]. While various enabling technologies offer numerous 

potential advantages and application prospects, they also intro‑
duce certain security problems[6]. For example, attackers can ex‑
ploit user interference caused by a vast number of antennas and 
devices in ultra-massive multi-input multi-output (UM-MIMO) 
systems to eavesdrop on and tamper with data. To ensure se‑
cure communication and transmission, threat detection and de‑
fense, and data confidentiality and integrity in 6G networks, it 
is crucial to redesign security safeguard mechanisms to achieve 
intelligent, flexible, and real-time endogenous security.
1.2 Physical-Layer Authentication

As a complement to traditional upper-layer authentication 
protocols, physical-layer authentication (PLA), with its high 
reliability, lightweight design, and exceptional compatibility, 
is considered an endogenous security protection strategy[7]. Pri‑
marily, the characteristics of physical-layer attributes, based 
on the inherent randomness of channels and the uniqueness of 
space-time-frequency, which are closely related to communi‑
cation links, devices, and locations, can represent unique 

18



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

MENG Rui, FAN Dayu, XU Xiaodong, LYU Suyu, TAO Xiaofeng 

Endogenous Security Through AI-Driven Physical-Layer Authentication for Future 6G Networks   Special Topic

identity signatures for legitimate users, making it extremely 
difficult for attackers to extract, imitate, or forge them[8]. Sec‑
ondly, PLA cleverly bypasses high-level signaling processes, 
allowing its access points to obtain the channel state informa‑
tion (CSI) of legitimate users during the channel estimation 
phase, significantly reducing computational resource con‑
sumption[9]. Furthermore, even if incompatible devices may 
face obstacles in decoding each other’s upper-layer signaling, 
they can still successfully parse the bit stream at the physical-
layer, further broadening the application and flexibility[10].

Recently, a growing number of researchers have designed 
artificial intelligence (AI) -empowered PLA methods to effec‑
tively address the uncertainty and unknown dynamic chal‑
lenges in wireless link modeling[11]. Advanced machine learn‑
ing (ML) algorithms can intelligently learn the distribution 
characteristics of channel fingerprints and optimize the au‑
thentication threshold in dynamic environments, achieving 
adaptive online authentication[12]. Additionally, unsupervised 
learning algorithms help build a malicious node detection 
model without prior knowledge of the attacker’s location or at‑
tack frequency[13]. Furthermore, deep learning (DL) technology 
excels at learning high-dimensional fingerprint features and 
classifying a large number of samples, enabling the identifica‑
tion of large-scale or even ultra-large-scale devices[14]. In sum‑
mary, compared with traditional PLA methods, AI-empowered 
PLA has several advantages. It overcomes the challenges of 
modeling the uncertainty and unknown dynamics of wireless 
links, achieves adaptive threshold authentication, possesses 
greater universality without needing extensive prior informa‑
tion, exhibits higher scalability, and is capable of identifying 
ultra-large-scale equipment[15].
1.3 Contributions

The main contributions of this paper are summarized as follows.
1) We review representative AI-based PLA research, which 

is classified into radio frequency (RF) fingerprint extraction, 
fingerprint data augmentation, lightweight authentication mod‑
els, authentication parameter optimization, multi-attacker 
identification, and physical-layer key generation for 
frequency-division duplexing (FDD) systems.

2) We propose a graph neural network (GNN) -based PLA 
scheme to identify mobile multiusers. Unlike most existing 
convolutional neural network (CNN) -based PLA schemes, the 
proposed scheme can learn the spatial correlation among vari‑
ous CSI fingerprint dimensions introduced by reconfigurable 
intelligent surfaces (RISs) through modeling the nodes and 
edges. Furthermore, the scheme also captures the temporal 
correlation between fingerprints and within fingerprint se‑
quences through dynamic graphs and temporal convolution 
learning. The simulations demonstrate the superiority of the 
proposed scheme over six baseline schemes.

3) We envision the future research direction of intelligent 
PLA for 6G, including semantic fingerprint-based PLA, large 
AI model-based PLA, cross-layer PLA, multi-modal signature-
based PLA, distributed autonomous PLA, and PLA for emerg‑
ing applications.
2 Existing AI-Enabled PLA Approaches

In Table 1, we provide a brief review of existing AI-
empowered PLA schemes, which is explained in detail below.
2.1 RF Fingerprint Extraction

The extraction of RF fingerprints relies on the hardware 
variations of transmitters, such as digital-to-analog converters 
(DAC), in-phase/quadrature (I/Q) modulators, and power am‑
plifiers. These differences result in distinct inherent proper‑
ties among radiation sources of the same model and batch. Tra‑
ditional extraction methods often depend on preprocessing 
techniques, such as time synchronization and phase offset 
compensation, as well as expert feature transformation meth‑

Table 1. Brief review on existing AI-empowered PLA schemes
Categories

RF fingerprint
extraction

Fingerprint data
augmentation
Lightweight

authentication 
model

Authentication pa‑
rameter optimiza‑

tion
Multi-attacker
identification

Physical-layer key 
generation for
FDD systems

Motivations
The extraction of RF fingerprints requires much prior information

Insufficient fingerprint samples lead to overfitting issues of PLA models, thus 
limiting authentication performance

To identify ultra-large-scale devices, PLA models usually have a large number 
of parameters and deep structures

Optimizing detection thresholds is challenging in complex channel environ‑
ments

The prior information of multi-attackers is difficult to obtain in actual applica‑
tions

In FDD systems, uplink and downlink transmissions work in different frequen‑
cy bands, and their channel frequency responses are no longer reciprocal

Methods
CNN[16], RNN[17], attention mecha‑

nism[18], and CVNN[19]

Added noise-based[20] and generated 
fingerprint-based[21] schemes

Transfer learning-based[22] and net‑
work compression-based[23] schemes

RL[24–25]

Clustering[13], OCC[26], and GMM[27]

Generative AI[28]

Performance
Realizing end-to-end RF

fingerprint extraction
Enhancing the generalization of PLA 

models
Reducing the deployment complexity 

of PLA models

Achieving the automatic optimization 
of authentication parameters

Realizing authentication without know‑
ing the prior information of attackers

Improving the key generation ratio

 AI: artificial intelligence
CNN: convolutional neural network
CVNN: complex-valued neural network

FDD: frequency-division duplexing
GMM: Gaussian mixture model
OCC: one class classification

PLA: physical-layer authentication
RL: reinforcement learning
RNN: recurrent neural network
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ods like the short-time Fourier transform and wavelet trans‑
form. However, these processes require prior information, lim‑
iting the practical applicability. In recent years, with the ad‑
vantages of DL in feature extraction, the acquisition of RF fin‑
gerprints gradually overcomes the dependence on prior infor‑
mation and manually optimizing parameters, and only requires 
preprocessing processes such as normalization and interpola‑
tion. DL is realized by neural networks, such as CNN[16], recur‑
rent neural networks (RNN) [17], attention mechanisms[18], and 
complex-valued neural networks (CVNN)[19].

Specifically, Ref. [16] presents a novel DL-based RF finger‑
print identification approach to IoT terminal authentication, le‑
veraging the differential constellation trace figure (DCTF) to 
extract RF fingerprint features without synchronization. CNN 
is designed to identify devices using DCTF features. It offers 
high accuracy, requires no prior information, and maintains low 
complexity. Ref. [17] explores RNNs for autonomous wireless 
system deployments in RF environments. By utilizing the tem‑
poral properties of received radio signals, Ref. [17] proposes a 
transmitter fingerprinting technique for device identification. 
Ref. [17] implements three RNN models, namely Long Short-
Term Memory (LSTM), the Gated Recurrent Unit (GRU), and 
ConvLSTM, using I/Q time series data collected from eight uni‑
versal software radio peripheral (USRP) software defined radio 
(SDR) transmitters. By exploiting temporal variations and spa‑
tial dependencies in the data, the model learns unique feature 
representations for transmitter identification. Ref. [18] presents 
a novel multi-channel attentive feature fusion method for RF 
fingerprinting. Unlike other models that rely on a single repre‑
sentation of radio signals, the proposed method integrates mul‑
tiple representations, such as in-phase and quadrature samples, 
carrier frequency offsets, and frequency transform coefficients. 
By employing a shared attention module, Ref. [18] adaptively 
fuses neural features extracted from these different channels, 
optimizing their weights during training. Additionally, a 
convolution-based ResNeXt block is implemented to map the 
fused features to specific device identities. Given that wireless 
signal information is encoded in complex basebands, Ref. [19] 
studies the application of CVNNs to develop device fingerprints 
through supervised learning.
2.2 Fingerprint Data Augmentation

The training of DL-based PLA models usually requires a 
large number of fingerprint samples. However, it is challeng‑
ing to obtain sufficient fingerprint samples in practical appli‑
cations. To address this issue, data augmentation is an effec‑
tive approach to enhancing the model generalization and im‑
proving the authentication accuracy. We divide the existing 
fingerprint data augmentation schemes into two subcategories: 
added noise-based[20] and generated fingerprint-based[22] 
schemes. The former employs Gaussian noises to mitigate 
model overfitting, while the latter enhances sample richness 
by generating additional fingerprint samples.

Specifically, Ref. [20] aims to enhance authentication per‑
formance with minimal training data by applying Gaussian 
noises in a smooth latent space, thus improving generalization 
and interpretability. The proposed scheme avoids reliance on 
synthetic samples while providing insights into the authentica‑
tion process through the defined Fingerprint Library. This al‑
lows for a better understanding of how input channel impulse 
responses (CIRs) correlate with authentication outcomes. Ref. 
[21] employs three data augmentation algorithms to expedite 
the model establishment and improve authentication success 
rates. By integrating deep neural networks with these augmen‑
tation methods, the scheme not only enhances performance 
but also accelerates training, even with limited samples.
2.3 Lightweight Authentication Model

To realize the identification of ultra-large-scale devices, au‑
thentication models typically possess a large number of param‑
eters and deep structures to learn multi-level and abstract fin‑
gerprint features. To reduce the computation and storage re‑
quirements of the PLA model without sacrificing most perfor‑
mance, researchers have designed transfer learning-based[22] 
and network compression-based[21] PLA schemes. The former 
can quickly identify the physical-layer fingerprints of different 
equipment types in unknown radio environments with only a 
few training samples through a pre-trained model[22]. For ex‑
ample, Ref. [22] introduces transfer learning to realize swift on‑
line user authentication, crucial for latency-sensitive applica‑
tions like edge computing. The latter employs lightweight tech‑
nologies, such as quantization, grouping convolution, and distil‑
lation, to reduce the parameters and calculation of PLA models. 
For instance, Ref. [23] introduces network compression tech‑
niques to reduce the model complexity and size. Despite the 
high model complexity and size of CVNNs, the proposed ap‑
proach ensures satisfactory identification performance.
2.4 Authentication Parameter Optimization

PLA is typically modeled as a hypothesis testing problem, 
where the authentication result is obtained by comparing the 
difference between the signal to be authenticated and a refer‑
ence signal with a detection threshold. Therefore, optimizing 
the detection threshold is crucial for authentication perfor‑
mance. Due to complex multipath effects, time-varying charac‑
teristics of channels, noise interference, and other factors, de‑
riving the detection threshold becomes increasingly difficult. 
To address this issue, RL, through continuous interaction with 
the environment, can learn how to make optimal authentica‑
tion decisions without fully understanding the channel model. 
Ref. [24] frames the interactions between a legitimate receiver 
and spoofers as a zero-sum authentication game. The receiver 
adjusts its test threshold to maximize utility based on the 
Bayesian risk in spoofing detection, while spoofers aim to 
minimize this utility by varying their attack frequencies. Since 
obtaining precise channel parameters beforehand is challeng‑
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ing, Ref. [24] introduces spoofing detection schemes based on 
Q-learning and Dyna-Q. These schemes leverage RL to deter‑
mine the optimal test threshold for spoofing detection. Ref. 
[25] presents a novel controller area network (CAN) bus au‑
thentication framework designed to protect message ex‑
changes against spoofing attacks. The proposed framework le‑
verages RL to optimize the selection of authentication modes 
and parameters. By implementing the Dyna architecture with 
the double estimator, the framework enhances authentication 
accuracy without necessitating changes to the CAN bus proto‑
col or electronic control unit components.
2.5 Multi-Attacker Identification

For detection attack scenarios, a suitable assumption is that 
the attackers’ prior information is unknown, and often multi-
attackers are present to confuse legitimate receivers. To ad‑
dress this challenge, unsupervised learning can construct an 
authentication model without requiring the attackers’ prior in‑
formation or training fingerprint set. By establishing decision 
boundaries, the detection of multi-attackers is achieved. Ref. 
[13] proposes a multi-attribute-based approach that considers 
the inherent correlation among physical-layer attributes. To 
manage the exponential computational complexity of corre‑
lated analysis, Ref. [13] introduces a reconstruction and heu‑
ristic algorithm to find a suboptimal solution with reduced 
complexity. An unsupervised machine learning-based non-
parametric clustering algorithm is proposed to enhance au‑
thentication reliability. The proposed approach does not re‑
quire prior information or a training set, thereby improving its 
universality. Ref. [26] assesses and compares the performance 
of various approaches under different channel conditions. Ref. 
[26] evaluates statistical decision methods and ML classifica‑
tion techniques, including one-class classifiers for scenarios 
with no forged messages or conventional binary classifiers 
when forged messages are present. Numerical results demon‑
strate that one-class classification algorithms achieve the low‑
est missed detection probability under low spatial correlation. 
Ref. [27] utilizes GMMs to identify spoofing attackers by clus‑
tering messages based on probabilistic models of different 
transmitters. A 2D feature measure space is used to prepro‑
cess channel information, and a pseudo adversary model is de‑
veloped to enhance detection performance against spoofers op‑
erating through unknown channels.
2.6 Physical-Layer Key Generation for FDD Systems

Physical-layer key generation offers a robust and efficient 
method for secure key generation by leveraging the unique 
properties of wireless channels. Exploiting the reciprocity and 
time-varying nature of these channels ensures that both com‑
municating parties can generate identical keys with minimal 
communication overhead and hardware requirements. The 
implementation of physical-layer key generation relies on the 
reciprocity of channels. However, in FDD systems, the uplink 

(from a user to a base station) and downlink (from a base sta‑
tion to a user) operate on separate frequency bands. This du‑
plexing method allows for simultaneous uplink and downlink 
communications, but it also introduces a frequency difference. 
The properties of the wireless channel, such as path loss, shad‑
owing, and multipath effects, are functions of frequency. Con‑
sequently, the frequency difference disrupts the channel reci‑
procity. To address this issue, generative AI is a promising ap‑
proach. Ref. [28] introduces a novel physical-layer key genera‑
tion scheme for FDD systems, addressing the challenges of ex‑
tracting common features in non-reciprocal channels, and em‑
ploys DL to create a feature mapping function between differ‑
ent frequency bands, enabling two users to generate highly 
similar channel features. Ref. [28] also proves the existence of 
a band feature mapping function using a feedforward network 
with a single hidden layer and proposes a key generation neu‑
ral network for reciprocal channel feature construction.
3 Proposed PLA Scheme for Mobile Users

This section provides the GNN-based PLA to identify mo‑
bile users, including the research motivation, networks and 
channel models, problem formulation, research methods, and 
simulation results.
3.1 Motivation

The accuracy and reliability of CSI fingerprints are crucial 
for PLA. However, their quality is often constrained in some 
scenarios such as the Industrial Internet of Things (IIoT) due 
to multipath fading, obstacle interferences, and complex elec‑
tromagnetic environments. To tackle this issue, RIS intelli‑
gently adjusts the wireless propagation environment, signifi‑
cantly boosting the expected signal power at the receiver[29]. 
Nevertheless, existing CNN-based PLA models frequently 
overlook the potential interdependencies among various CSI 
dimensions. With the integration of RIS, the wireless environ‑
ment has transformed, resulting in a strong correlation among 
diverse dimensional features of CSI fingerprints. Hence, the 
primary challenge lies in fully extracting the intrinsic features 
of these reconfigurable channel fingerprints.

Furthermore, in certain scenarios, smart devices are frequent 
in motion. For example, mobile terminals in logistics and pro‑
duction lines augment efficiency and flexibility, while un‑
manned vehicles and mobile robots engaged in data collection 
and monitoring tasks enhance real-time analysis and decision-
making capabilities. Since CSI is a location-specific physical-
layer attribute, user movement alters the distribution of CSI, 
with greater deviations as the distance from the transmitter in‑
creases[30]. Consequently, leveraging CSI-based PLA methods to 
identify mobile users poses another significant challenge.

To address the first challenge, we deployed GNNs to cap‑
ture the dependencies and topological structures among vari‑
ous CSI dimensions introduced by the RIS. Existing CNN-
based PLA models frequently neglect the underlying depen‑
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dency relationships among different CSI dimensions. In addi‑
tion, RNNs have certain limitations in handling sequence 
data, particularly long sequences, which restricts their ability 
to capture long-term dependencies. In contrast, GNNs, 
through the connections of nodes and edges, can naturally cap‑
ture the correlations among multi-dimensional channel fea‑
tures. These direct or indirect correlations are transmitted 
through paths between nodes. For example, Ref. [31] models 
MIMO CSI prediction as a multivariate time-series forecasting 
problem and introduces GNNs to exploit both spectral and 
temporal correlations between historical and future CSI.

To tackle the second issue, we formulated the variations of 
CSI fingerprints in mobile scenarios as time series. We then 
integrated temporal convolution networks and dynamic GNNs 
to fully exploit the temporal correlations both among CSI 
samples and within sequences of CSI samples. Unlike static 
GNNs, dynamic GNNs can capture both spatial and temporal 
dependencies among variables and excel at processing multi‑
variate time series data.
3.2 Network Model

As depicted in Fig. 1, we consider a multiuser access au‑
thentication scenario, wherein K users engage in communica‑
tion with the receiver (Bob) across distinct time slots. Given 
that users are in constant motion, the distance between them 
is assumed to exceed half a wavelength, ensuring the unique‑
ness of their fingerprints. To bolster signal strength and 
broaden coverage, RISs are utilized to redirect the incident 
signal toward the target area by adjusting the reflected signal. 
This enhances the quality of channel fingerprints in areas af‑
fected by signal blind spots or weak signal reception. Notably, 
RISs are controlled by Bob. Additionally, edge servers sta‑
tioned at Bob’s location are leveraged to optimize the deploy‑
ment performance of AI-driven PLA models.

3.3 Channel Model
NT and NR represent the numbers of antennas of each user 

and of Bob, and the received signal at Bob can be denoted as:
YS = QXS + W (1),

where XS with NT-size column denotes the transmitted signal, 
and W~CN (0,σ2 ) with NR-size column denotes Gaussian 
noises. Q = HΨG ∈ CNR × NT represents the hierarchical chan‑
nel matrix from the user to Bob through RISs, where 
H ∈ CNR × N and G ∈ CN × NT respectively stand for the channel 
matrices from RISs to Bob and from the user to RISs, and Ψ =
diag (ψ0,…,ψN - 1 ) ∈ CN × N represents the response matrix of 
RISs with N denoting the number of elements of RISs. ψn =
An(θn ) ejθn with An(θn ) and ejθn respectively denoting the con‑
trollable magnitude and phase response of the n-th RIS ele‑
ment. H and G are modeled as Rician channels, which are de‑
noted as:
H = PLκH1 + κH

H̄ + PL
1 + κH

H͂ (2),

and
G = PLκG1 + κG

Ḡ + PL
1 + κG

G͂ (3),

where H̄ and Ḡ represent line of sight (LoS) paths, κH and κG 
represent Rician factors, and H͂ and G͂ denote non-LoS (NLoS) 
paths. PL represents the corresponding path loss. The configu‑
rable fingerprints x are acquired via channel estimation, 
which is not the focus of this paper and can be accomplished 
through various techniques, such as compressed sensing, ma‑
trix factorization, and DL methods[32].
3.4 Problem Formulation

Due to the multidimensional nature of complex CSI finger‑
prints in mobile scenarios, these fingerprints can be repre‑
sented as multivariate time series X = { x1,x2,…,xd } ∈ Rd × l, 
where d = 2NR NT signifies the dimension of CSI fingerprints. 
Each time series component can be denoted as x i =
{ x i,1,x i,2,…,x i,l }, where i = 1, 2,…, d and l ∈ N* denotes the 
length of CSI fingerprint sequences. The authentication prob‑
lem is formulated as a classification task from { X1,X2,…,Xm } 
to { y1,y2,…,ym }, aiming to predict the identity y of the CSI fin‑
gerprint sequence X. Here, { y1,y2,…,ym } corresponds to the 
identity labels of the CSI fingerprint sequences 
{ X1,X2,…,Xm } ∈ Rm × d × l, with m denoting the number of CSI 
fingerprint sequences.
3.5 Proposed GNN-Based PLA Scheme

As illustrated in Fig. 2, the proposed PLA scheme includes 
training and authentication stages. Fig. 3 illustrates the de‑

RIS: reconfigurable intelligent surface
Figure 1. System model of a multiuser access authentication scenario
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tailed training process, including fingerprint acquisition, fin‑
gerprint preprocessing, graph initialization, temporal convolu‑
tional networks, dynamic GNN, hierarchical pooling, and au‑
thentication result output modules.
3.5.1 Fingerprint Acquisition

As described in Section 3.3, the cascade CSI fingerprints 
can be acquired through channel estimation. In this paper, ar‑
tificial noise is considered to verify the authentication perfor‑
mance versus different signal-to-noise ratio (SNR) conditions.
3.5.2 Fingerprint Preprocessing

The training CSI dataset is composed of CSI fingerprints 
and corresponding identity labels, which are represented as:

X train = é
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(5),
where Nk denotes the number of CSI sequences of the k-th 

user, k ∈ [1,K ], and Lk represents the corresponding identity 
label encoded by one-hot coding[33].
3.5.3 Graph Initialization

Nodes and edges collectively form the core structure of a 
graph, typically denoted as G = (V, E )[34]. Nodes V, serving as 
the fundamental building blocks of a graph, represent entities 
or objects within the graph, specifically the CSI fingerprint se‑
quences of users. Edges E play the pivotal role of bridges con‑
necting nodes, revealing the correlations and interactions 
among them. Edges E can be either directed or undirected, 
and may even be assigned weights to quantify the strength or 
importance of the relationships between nodes V.

The essence of GNNs lies in deeply extracting the representa‑
tions of nodes and edges. Through continuous learning and up‑
dating of node features, more enriched and insightful node rep‑
resentations can be generated. Leveraging the connectivity 
among nodes and the characteristic information of edges, opera‑
tions such as message passing and graph structure learning are 
conducted, further extracting the global features of the graph.

The relationships between various nodes are represented 
through adjacency matrices, where each node is assigned 
two values representing the source node and the target 
node[35]. Consequently, each time series corresponds to two 
vectors, λ and φ, both with the length of d. The values of λ 
and φ are randomly initialized. The adjacency matrix can 
be expressed as:
A = λT∙φ ( )6 .
Furthermore, we set most of the adjacency matrix’s ele‑

ments to zero, thereby rendering it sparser and reducing the 
number of elements that need to be computed. Specifically, for 
the adjacency matrix of each time series, only the top k ele‑
ments with the highest weights are retained, while the other 
values are set to zero.
3.5.4 Temporal Convolutional Network

Temporal convolutional networks focus on capturing the 
temporal dependencies within each dimension of the CSI fin‑
gerprint by utilizing three CNN layers with different convolu‑

tional kernels, and applying 
padding operations to ensure 
that the output length matches 
the input CSI fingerprint se‑
quence[36]. As illustrated in Fig. 
4, in CNNs, neurons deviate 
from the fully connected archi‑
tecture of traditional neural net‑
works by adopting a locally con‑
nected approach. Specifically, 
each neuron establishes a con‑
nection to a local region of the 
input data, known as the recep‑

Figure 2. Proposed PLA approach

(a) Training stage

(b) Authentication stage
PLA: physical-layer authentication

Figure 3. Steps of the proposed GNN-based scheme
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tive field, via a convolution kernel (often implemented as a 
window function). Typically, the depth of the convolution ker‑
nel aligns with the depth of the input data. Each convolution 
kernel is designed to generate a feature map, meaning that 
multiple convolution kernels collectively yield multiple fea‑
ture maps, contributing to the depth of the output data.

The learned characteristics of the l-th CNN layer can be de‑
noted as:
X l = σ (W l*X l - 1 + B l) (7),

where X l serves as both the output from the ( l - 1)-th CNN 
layer and the input to the l-th CNN layer, σ represents the ac‑
tivation function and * denotes the convolution operation. Ad‑
ditionally, W l and B l represent the weight and bias matrices, 
respectively, within the l-th CNN layer.
3.5.5 Dynamic GNN

GNNs are broadly classified into static and dynamic graph 
categories. Static graphs are particularly suited for scenarios 
featuring unchanging topological structures, such as user rela‑
tionship graphs in social networks. Conversely, dynamic 
graphs excel in managing evolving graph structures and attri‑
butes, akin to traffic networks where vehicle positions vary 
over time[37]. In mobile wireless communication scenarios, 
shifts in user positions result in continuous alterations in the 
distribution of CSI fingerprints. Consequently, dynamic 
graphs are employed to capture the temporal dynamics inher‑
ent in CSI fingerprint sequences.

As shown in Fig. 5, for all graphs except the first one, an 
identical number of vertices are added to represent the CSI 
fingerprint characteristics of the corresponding vertices from 
the previous time series. Directed edges are assigned between 
vertices from the previous time window v( t - 1,n ) and the current 
time series v( t,n ) to establish associations.
3.5.6 Hierarchical Pooling

By combining graph pooling and temporal processing, this 
module utilizes hierarchical pooling to decrease the number of 
nodes, thereby circumventing the information loss inherent in 

techniques like max pooling and average pooling[38]. As shown 
in Fig. 6, at each hierarchical level, nodes are converged 
through temporal convolutions to extract temporal features, 
and the adjacency matrix is then updated using convolutional 
weights.
3.5.7 Authentication Results

This module averages the values in the feature graph 
through average pooling to obtain a fixed-length vector. This 
vector is then mapped to a logic vector through a fully con‑
nected layer, and finally, the authentication result is obtained 
through the softmax function.
3.6 Simulation Results and Analysis

3.6.1 Baseline Schemes
We consider six baseline schemes as follows.
• K-nearest neighbor (KNN) [39]: Given a test sample, KNN 

searches for the k nearest fingerprint samples (neighbors) in 
the training dataset. Based on the information of these k neigh‑
bors, the identity of the test fingerprint sample is predicted.

• Naive Bayes (NB) [40]: NB assumes that the features are 
conditionally independent of each other given the identity la‑
bel. Based on this assumption and Bayes’ theorem, it calcu‑
lates the posterior probability of each class for a given sample 
and assigns the sample to the class with the highest posterior 
probability.

Figure 4. Representation of the convolution operation in CNN layers
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Figure 5. Dynamic graph
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• Gradient boosting decision tree (GBDT)[39]: GBDT itera‑
tively constructs multiple decision trees and minimizes the 
loss function through gradient descent, thereby gradually im‑
proving prediction accuracy. Its core idea is to build a 
strong learner using weak learners. In each iteration, GBDT 
adds a new decision tree to the current model to fit the re‑
siduals between the predictions of the previous model and 
the true values, thereby progressively refining the identity 
predictions.

• Regularized gradient boosting optimization (RGBO) [30]: 
Compared with GBDT, RGBO utilizes a second-order Taylor 
expansion to approximate the changes of the loss function, en‑
abling it to more accurately estimate the descent direction at 
each iteration, thereby accelerating convergence speed and 
improving prediction accuracy. Additionally, RGBO incorpo‑
rates a regularization term into the objective function to con‑
trol the complexity of the model and prevent overfitting.

• Improved gradient boosting optimization (IGBO) [30]: Un‑
like RGBO, IGBO efficiently processes data, reduces memory 
consumption, and enhances training speed by optimizing the 
sampling process of fingerprints.

• Hybrid method (combining CNNs and RNNs)[41]: CNNs ex‑
cel at feature extraction from static data, particularly in isolat‑
ing local features within images. Conversely, RNNs are adept 
at handling the dependencies inherent in time series data, ef‑
fectively retaining and utilizing past information. Conse‑
quently, the hybrid method merges these strengths, combining 
CNN’s feature extraction prowess with RNN’s sequence pro‑
cessing capabilities.
3.6.2 Performance Metric

The authentication performance of the proposed PLA model 
is measured by authentication accuracy as:

AucRate = 1
N ∑

n = 1

N

I ( )Ln = Yn (8),

where N is the number of CSI fingerprint sequences, and Ln and Yn respectively stand for the real and predicted identity la‑
bels of the n-th CSI fingerprint sequence. If ∙ is true, I (∙) = 1; 
if ∙ is false, I (∙) = 0.

3.6.3 Simulation Parameters
CSI fingerprints are generated through the MATLAB plat‑

form, and the performance of the proposed scheme is verified 
through Python. The positions of users, RISs, and Bob are pro‑
vided in Fig. 7, and the detailed parameters are provided in 
Table 2. The number of layers in GNNs typically depends on 
the complexity of the dataset. For a straightforward graph, just 
a few layers may suffice to capture valuable information. How‑
ever, for intricate graph structures, more layers may be re‑
quired to extract sophisticated feature representations. Fur‑
thermore, while increasing the number of layers can enhance 
the model’s expressive power, it may also introduce issues 
such as over-fitting, where node characteristics converge and 
become indistinguishable after multiple layers of propagation, 
thereby impeding the model’s ability to differentiate between 
nodes. Additionally, it may lead to problems like gradient van‑
ishing or exploding. Consequently, in our simulation, the num‑
ber of GNN layers is set to 3. The selection of the batch size 
should consider hardware resources, dataset size, and model 
complexity. Therefore, we choose a batch size of 16.
3.6.4 Simulation Results

Fig. 8 analyzes the authentication accuracy versus different 
distances between adjacent users. As the distance between us‑
ers decreases, the similarity of CSI fingerprints increases, 

RIS: reconfigurable intelligent surface
Figure 7. Positions of users, RISs, and Bob

Table 2. Simulation parameters
Parameters

NT

Number of RIS elements
κH

Bandwidth
Number of each user's CSI fingerprint samples

Length of each CSI fingerprint sequence
Learning rate

Number of GNN layers

Values

4
8×16

3
1 MHz
50 000

50
0.000 1

3

Parameters

NT

Carrier frequency
κG

Speed of users
Number of each user’s CSI fingerprint sequences

Ratio of training fingerprints
Batch size

Ratio of pooling for nodes

Values

3
3.5 GHz

4
2 m/s
1 000

0.6
16
0.2

CSI: channel state information     GNN: graph neural network     RIS: reconfigurable intelligent surface

Z/m

Bob(5, 0, 25)

H

(0, 80, 30)
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G
Y/m

User 1(10, 80, 0)
X/m

The distance betweentwo adjacaent users is 2 mMobile direction

User 6(10, 90, 0)
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leading to a higher degree of overlap in their fingerprint distri‑
butions. Consequently, it becomes more challenging for the 
PLA model to distinguish between them, resulting in lower au‑
thentication accuracy. However, the proposed PLA scheme 
consistently outperforms the benchmark models.

Fig. 9 depicts the authentication accuracy versus different 
SNRs. The authentication accuracy of baseline schemes im‑
proves gradually with higher SNRs. Regardless of SNR levels, 
the proposed scheme consistently outperforms these baselines, 
demonstrating superior robustness. This superiority stems 

from its consideration of the variations in CSI fingerprint dis‑
tribution caused by user movements, whereas the other meth‑
ods presume an independent and identical distribution of CSI 
fingerprints for each user.
4 Future Research Directions

This section gives challenges and the future research direc‑
tion of AI-driven PLA, including semantic fingerprint-based 
PLA, large AI model-based PLA, cross-layer PLA, multimodal 
signature-based PLA, distributed autonomous PLA, and PLA 
for emerging applications.
4.1 Semantic Fingerprint-Based PLA

Unlike traditional syntax-based communication paradigms 
that focus on indiscriminate transmission of bit data, semantic 
communications ensure an accurate understanding of the com‑
munication intent of source information at both the transmitting 
and receiving ends through the representation and measure‑
ment of semantic information, on-demand compression, and effi‑
cient and robust transmission. Inspired by semantic communi‑
cations, we can extract knowledge of environmental semantic 
features from the channel propagation environment. By doing 
so, the physical channel can be abstracted as a semantic chan‑
nel to assist in guiding the acquisition and optimization of chan‑
nel fingerprints. Ref. [42] proposes an environmental semantics-
enabled PLA method, which extracts frequency-independent 
wireless channel fingerprints from CSI in massive MIMO sys‑
tems based on environmental semantic knowledge. The pro‑
posed method can effectively detect physical-layer spoofing at‑
tacks and is robust in time-varying wireless environments. In 
the future, constructing a knowledge base of semantic channel 
fingerprints and a semantic channel knowledge map can further 
enhance the efficiency and accuracy of PLA.
4.2 Large AI Model-Based PLA

In recent years, research on large models has been in full 
swing, and they offer the following advantages. 1) Large mod‑
els possess more parameters, enabling them to learn more 
complex data patterns and thus perform better on various 
tasks. 2) The knowledge learned by large models during train‑
ing is more generalizable, allowing for better generalization to 
unseen data and reducing the need for extensive labeled data. 
3) With ongoing advancements in computing resources, the 
cost of training and deploying large models has gradually de‑
creased. In the future, for multiuser authentication needs, 
high-robustness authentication requirements in complex envi‑
ronments, and lightweight authentication needs, PLA empow‑
ered by large models will exhibit exceptional performance.
4.3 Cross-Layer PLA

The training of PLA models based on AI requires the guid‑
ance of prior knowledge of legitimate fingerprints, which origi‑
nates from identity labeling by upper-layer authentication 
mechanisms. Therefore, PLA is a type of cross-layer authenti‑
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cation technology, and its complexity is influenced by the in‑
teraction efficiency between the upper layer and the physical 
layer. Ref. [43] deploys active learning to select optimal unla‑
beled fingerprints and queries the identity from the upper-
layer authentication protocol. The proposed method can effec‑
tively reduce the interaction requirements between the upper-
layer and the physical-layer, achieving efficient utilization of 
prior fingerprint information. In the future, optimizing the fin‑
gerprint selection algorithm could further reduce the authenti‑
cation error rate while maintaining lightweight performance.
4.4 Multimodal Signature-Based PLA

By integrating technologies such as wireless communica‑
tions, radio sensing, and even AI, integrated sensing and com‑
munication (ISAC) can achieve the goals of spectrum conser‑
vation, cost reduction, and mutual enhancement between com‑
munication and sensing. Ref. [44] introduces the concept of 
synesthesia of machines and establishes a platform for generat‑
ing and collecting communication and multimodal sensing in‑
formation. This platform can provide multimodal data under 
diverse scenarios (urban, suburban, and rural) and various 
conditions (different weather, times of day, traffic densities, 
frequency bands, and antenna arrays). In the future, by design‑
ing multimodal fusion algorithms that integrate channel finger‑
prints, RF sensing data (millimeter-wave radar point clouds), 
and non-RF sensing data (RGB images, depth maps, and Li‑
DAR point clouds), highly reliable identity authentication in 
dynamic and complex environments can be achieved.
4.5 Distributed Autonomous PLA

With the advancement in cloud computing and edge intelli‑
gence, the cloud-edge-end collaborative architecture can opti‑
mize resource utilization in a distributed manner and enhance 
data security. Ref. [45] proposes a privacy-preserving collab‑
orative authentication scheme that provides reliable and effi‑
cient security, improved robustness in dynamic or untrusted 
environments, and stronger defensive capabilities compared 
with traditional centralized authentication methods. Future re‑
search includes cross-domain distributed PLA systems to en‑
sure seamless switching and access for users or devices across 
different domains.
4.6 PLA for Emerging Applications

Future 6G networks will expand the boundaries of commu‑
nication technology and transform the way we live and work. 
6G will support emerging application scenarios, such as inte‑
grated space-air-ground-sea networks for ubiquitous coverage. 
Ref. [46] considers the identity security of satellite transmit‑
ters and provides a PLA scheme for low-earth orbit satellites. 
Ref. [47] provides a PLA approach for complicated time-
varying underwater acoustic channels. Future research in‑
cludes optimizing fingerprint feature extraction algorithms, de‑
veloping anti-interference PLA technologies, and assessing in‑
dustrial feasibility.

5 Conclusions
As the next generation of mobile communication technol‑

ogy, 6G stands as a pinnacle of global technological advance‑
ment and plays a pivotal role in driving future industrial devel‑
opment. As the latest iteration of information infrastructure, 
the security of 6G directly relates to the safe operation of na‑
tional critical infrastructures. Currently, authentication mecha‑
nisms in wireless communications primarily rely on 
cryptography-based algorithms, and these “add-on” and 

“patchwork” authentication mechanisms face challenges in 
terms of security protection levels, computational power re‑
quirements, and compatibility. As an endogenous security ap‑
proach, AI-based PLA boasts strong security assurance, intel‑
ligence, efficiency, and strong scalability. This paper first re‑
views representative AI-enabled PLA schemes, categorizing 
them into RF fingerprint extraction, fingerprint data augmenta‑
tion, lightweight authentication models, authentication param‑
eter optimization, multi-attacker identification, and physical-
layer key generation for FDD systems. Furthermore, this paper 
proposes a GNN-based solution to identifing mobile multius‑
ers and compares its performance with six baseline schemes to 
verify its superiority. Finally, this paper outlines future re‑
search directions, providing new insights for researchers in re‑
lated fields.
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1 Introduction

Semantic communication (SemCom) has garnered sig‑
nificant attention in recent years, with researchers ex‑
ploring innovative approaches to enhance the effi‑
ciency and reliability of information transmission[1]. 

Generally, SemCom leverages deep learning-based joint 
source-channel coding (JSCC) methods to preserve global se‑
mantic information and local texture during the transmission 
process. DeepJSCC[2] pioneers these works by implementing 

JSCC with feedback and allowing for real-time adaptation to 
channel conditions. Along with its steady progress, JSCC 
has been substantially studied, mostly with the optimization 
objective shifting from bit error rates to the semantic rel‑
evance of the transmitted information in SemCom[3–14]. How‑
ever, albeit the awfully exploded research interest, one criti‑
cal question remains unsolved: why does the joint approach 
stand out, as separate source channel coding (SSCC), shall 
promise a greater degree of freedom from an optimization 
perspective?

As the terminology implies, SSCC encompasses two de‑
coupled ingredients: source coding and channel coding. The 
former part lies in effectively compressing the context, and 
the effectiveness of underlying deep neural networks (DNN)-
based predictors, such as recurrent neural networks (RNN) -

This work was supported in part by the National Key Research and Devel⁃
opment Program of China under Grant No. 2024YFE0200600, the Zhejiang 
Provincial Natural Science Foundation of China under Grant No. 
LR23F010005, and the Huawei Cooperation Project under Grant No. 
TC20240829036.
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based DeepZip[15], Long Short Term Memory (LSTM) -
based[16–17] and hybrid DNN-based Dzip[18], have been vali‑
dated widely in achieving satisfactory text compression. More 
prominently, Transformer-based[19] and Large Language 
Model (LLM)-based compression have emerged recently[20–24]. 
The latest research[25] unveils the equivalence between com‑
pression and prediction. In other words, in the general frame‑
work where statistical models predict symbols and encoders 
use predictive probabilities to perform compression, better 
predictive models lead directly to better compressors[25]. 
Hence, the astonishing capability of LLM implies the poten‑
tial for an unprecedented source codec. On the other hand, 
the Error Correction Code (ECC) plays an indispensable role 
in channel coding. Although some advanced algebraic block 
codes like Bose–Chaudhuri–Hocquenghem (BCH) codes[26], 
Low-Density Parity-Check (LDPC) codes[27] and Polar codes[28] 
can somewhat ensure the reliability of transmission, the effi‑
cient decoding of ECC is an unresolved difficulty. Recently, 
DNNs have started to demonstrate their contribution to chan‑
nel coding. For example, deep learning models are imple‑
mented to achieve belief propagation (BP) decoding[29–31], 
while a model-free Error Correction Code Transformer 
(ECCT) for algebraic block codes[32] contributes to the en‑
hancement of decoding reliability.

In this paper, on top of an LLM-based arithmetic coding 
(LLM-AC) system, the proposed SSCC framework integrates 
fine-grained, semantics-aware probability modeling and en‑
coding with ECCT-enhanced channel decoding, thus forming 
a closed-loop optimization framework. To the best of our 
knowledge, this work represents the first comprehensive inte‑
gration of LLM-based compression and ECCT-
complemented channel decoding for a holistic SemCom ar‑
chitecture. Through extensively showcasing the performance 
superiority over JSCC, we argue this performance improve‑
ment primarily arises after tackling the underlying incompat‑
ibility between conventional SemCom approaches[3–7, 11–14] 
and digital communication architectures[33]. Particularly, 
those approaches simply assume the deliverability of en‑
coded semantic feature vectors while neglecting the energy 
costs associated with transmitting high-precision floating 
point numbers[33]. However, further quantization[9–10] and 
digital modulation can compromise the widely assumed exis‑
tence of performance superiority in JSCC. Meanwhile, in con‑
trast to the direct utilization of the astonishing semantic in‑
terpretation capability[34–36], the deployment of LLMs fo‑
cuses on the compression and encoding of text to squeeze the 
largely untapped redundancy. Therefore, our work is also sig‑
nificantly different from existing integrations of generative 
AI (GAI) and SemCom[37–43]. Furthermore, the adoption of 
ECCT boosts the effectiveness of SSCC in specific cases. In 
summary, our comprehensive evaluation of LLM and ECCT-
based SSCC demonstrates that separate source channel cod‑
ing is still what we need.

The rest of this paper is organized as follows. Section 2 in‑
troduces the SSCC system model, while its key components 
are enumerated in Section 3. Section 4 provides numerical 
results demonstrating the performance superiority of the pro‑
posed SSCC system. Finally, Section 5 concludes this paper 
with discussions on future works. For convenience, we list 
the major notations of this paper in Table 1.
2 System Model

Our SSCC framework encompasses the following ingredients.
1) Source encoding
The input text sequence denoted as s undergoes a source 

encoder that converts characters into a compressed binary 
message m ∈ { 0,1 }K. During source encoding, arithmetic cod‑
ing (AC) can be leveraged for effective compression here. 
For LLM-based processing, an intermediate result (i.e., a se‑
quence of tokens t) can be obtained during the transforma‑
tion from s to m.

Table 1. Major notations used in this paper
Notation
s,  ŝ

t, t̂
Cs, Ce

ρ, ρ͂

D, Di, τ

Ik, lk, uk

m, m̂

λ

N, K
G, H

x, xb, xs

x̂, x̂b

N ( ⋅ ,⋅ ) , σn

h

z, z͂, ẑ

y, yb, y͂
syn ( ⋅ )
f ( ⋅ )
W

g ( ⋅ )

Definition
The transmitted text sequence and the recovered text sequenceat the re‑

ceiver side
The transmitted token sequence and the recovered token sequence at 

the receiver side
The source code and the channel code (error correction code)

The source distribution and the predicted probability distribution via 
LLM

The dictionary of source coder, the i-th character in the dictionary, and 
the vocabulary of the dictionary

The probability interval in step k of source coding and its correspond‑
ing lower and upper bounds

The message encoded by the source coder and the received (and chan‑
nel decoded) message

The probability interval, determined by the codeword, in a decimal form
The codeword length and message length of error correction code 

Ce(N,K )
The generator matrix and the parity check matrix

The transmitted codeword encoded by the channel coder and its binary 
and sign form

The soft approximation of codeword and its binary form
The Gaussian distribution and the standard deviation of noise

The channel fading coefficient
The additive Gaussian noise, as well as its corresponding multiplicative 

noise and the prediction result by ECCT
The noisy codeword, its binary form, and the result of pre-processing 

noisy codeword
The syndrome of codes defined in ECCT

The decoding function of ECCT
The learnable embedding matrix for high-dimensional mapping

The code-aware self-attention mask
ECCT: Error Correction Code Transformer       LLM: Large Language Model

31



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

REN Tianqi, LI Rongpeng, ZHAO Mingmin, CHEN Xianfu, LIU Guangyi, YANG Yang, ZHAO Zhifeng, ZHANG Honggang 

Special Topic        Separate Source Channel Coding Is Still What You Need: An LLM-Based Rethinking        

2) Channel encoding and modulation
The message m is then encoded via an LDPC code 

Ce(N,K ), which is selected for its excellent error-correction 
capabilities and compatibility with iterative decoding algo‑
rithms, as mentioned in Ref. [32]. The encoding process em‑
ploys a generator matrix G to transform the message in m to a 
codeword xb ∈ { 0,1 }N. The parity check matrix H, which sat‑
isfies G ⋅ H T = 0 and H ⋅ xb = 0, is a key component of the 
LDPC decoding process. Afterwards, binary phase shift key‑
ing (BPSK) modulation maps the binary codeword xb to a se‑
quence of symbols xs ∈ {±1}N, suitable for transmission over 
the wireless channel. Notably, other error correction codes, 
such as Polar codes[28], can be applied as well.

3) Channel
The modulated signal xs is transmitted over a noisy chan‑

nel, modeled as an additive white Gaussian noise (AWGN) 
channel or a Rayleigh fading channel. The received signal 
y ∈ RN is corrupted by additive noise z ∼ N (0, σ2

n ), result‑
ing in y = hxs + z, where h is the channel fading coefficient.

4) Demodulation and channel decoding
BPSK demodulation recovers a binary codeword 

x̂b ∈ { 0,1 }N from x̂. Subsequently, the channel decoder recon‑
structs the message m̂ ∈ { 0,1 }K from x̂b. In contrast to conven‑
tional approaches that employ either hard-decision (e. g., the 
bit-flipping algorithm) or soft-decision (e. g., the sum-product 
algorithm) algorithms to decode LDPC codewords transmitted 
through the channel, some complementary decoding modules, 
such as ECCT, can be applied prior to demodulation to en‑

hance the decoding performance. Notably, ECCT can provide 
an estimation of the transmitted codeword x̂b, denoted as x̂, 
while subsequent demodulation and information bits extrac‑
tion are then performed on the estimated codeword x̂.

5) Source decoding
The recovered message m̂ is ultimately decoded by the 

source decoder, which reconstructs the text sequence ŝ from 
the message, effectively reversing the encoding process. 
Similar to the encoder, the decoder can implement arithme‑
tic decoding.

In comparison, JSCC typically employs an end-to-end 
DNN to implement source and channel codecs. Here, the ter‑
minology “end-to-end” implies the joint training of source 
and channel codes, as adopted in most works. Further details 
on JSCC can be found in Ref. [1] and the references therein. 
In the following section, we will address how to leverage the 
strength of LLM to enhance text compression and reconstruc‑
tion, combined with the robustness of ECCT-complemented 
LDPC codes for error correction, as shown in Fig. 1.
3 Proposed SSCC Framework

In this section, we introduce LLM-based source coding 
and ECCT-complemented channel coding.
3.1 LLM-Based Source Coding

Given a source distribution ρ, lossless compression aims to 
encode a text sequence s sampled from ρ into a binary code m =
Cs( s) of minimal possible length with no loss of original infor‑

Figure 1. Framework of LLM-based and ECCT-complemented SSCC system

AC: arithmetic coding      BPSK: binary phase shift keying      ECCT: Error Correction Code Transformer      LLM: Large Language Model
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mation. According to Shannon’s source coding theorem[44], the 
optimal expected bit length is Lmin = Es ∼ ρ[ - log2 ρ ( s) ]. To 
obtain such optimal length, arithmetic coding[45–46], a form of 
entropy encoding, is typically adopted, relying on a probabilis‑
tic model over ρ or its marginal distribution. Arithmetic coding 
implies that frequently used characters are stored with fewer 
bits while rarely occurring characters correspond to more bits, 
resulting in fewer bits used in total.

In particular, the input text sequence s undergoes tokeniza‑
tion by the LLM tokenizer, which converts characters into a se‑
quence of tokens t for processing by the LLM. The LLM subse‑
quently generates a compact representation of the text, effec‑
tively encoding the tokens into a compressed binary message 
m ∈ { 0, 1 }K. Specially, considering a dictionary D of τ tokens, 
the input sequence s is first parsed into the token sequence t. 
Given the first k tokens t1:k, the (k + 1)-th token tk + 1 can be 
inferred as a predicted probability distribution ρ͂ ( tk + 1|t1:k ). 
Here, ρ͂ ( tk + 1|t1:k ) indicates the LLM’s estimation of the true 
distribution ρ ( tk + 1|t1:k ). The incremental decoding nature in 
LLM enables it to accurately predict the probability distribu‑
tion of the next token based on known ones, thereby providing 
a sub-optimal estimation of the true distribution[25]. As shown 
in Fig. 2, selecting the next character effectively narrows 
down the probabilistic interval where the sequence is located, 
which means the code m is determined once the interval is 
fixed. Starting with I0 = [0, 1), the previous interval deter‑
mined by t1:k in step k is defined as Ik = [ lk, uk ). Therefore, de‑
noting p ( tk + 1 = Dj ) = ρ͂ ( tk + 1 = Dj|t1:k ),

Ik + 1( )Di =
é

ë

ê

ê
êê
ê

ê ö

ø

÷

÷
÷÷÷
÷
÷

÷lk + ( )uk - lk × ∑j < i
p ( )tk + 1 = Dj ,

lk + ( )uk - lk × ∑j ≤ i
p ( )tk + 1 = Dj

(1).

In practice, we consider finite precision arithmetic encod‑
ers, referring to Ref. [47], with pseudo-code provided in Ap‑
pendix 1. Consequently, we can obtain a binary code m =
Cs( s) of the shortest length, completely corresponding to the 
probability interval determined by the sequence. At the re‑
ceiver side, if the receiver shares a consistent source distri‑
bution ρ͂ with the sender, given the received (and channel-
decoded) bit sequence m̂ corresponding to Cs( s), we can de‑
code tKn + 1 = Di ∈ D by identifying Di, such that
În + 1 = [ )ln + 1, un + 1 =
ì

í

î

ï
ïï
ï

ï
ïï
ï

[ )ln, 1
2 ( )ln + un , if mn + 1 = 0

[ )1
2 ( )ln + un , un , if mn + 1 = 1

⊆ ÎKn + 1( )Di = [ )L, U (2),

where L = lKn + 1 + (uKn + 1 - lKn + 1 ) × ∑j < i
p ( )tKn + 1 + 1 = Dj  and 

U = lKn + 1 + (uKn + 1 - lKn + 1 ) × ∑j ≤ i
p ( )tKn + 1 + 1 = Dj . For more 

details, please refer to Appendix 1.
Fig. 3 illustrates such LLM-based arithmetic encoding 

and decoding, where the LLM provides a probability interval 
according to the text sequence s. Unlike the online setting, 
which trains the model on the data to be compressed, this pa‑
per assumes the availability of a well-trained LLM and em‑
ploys it to compress different datasets, following the offline 
setting used in Ref. [24].

Remark 1: Ref. [25] figures out that the expected code 
length achieved by leveraging LLM as a compressor could be 
represented as the cross-entropy, that is,

H ( )ρ, ρ͂ ≔ Es ∼ ρ[ ]∑i = 1
n - log2 ρ͂ ( )si|s< i (3),

where ρ is the source distribution and ρ͂ is the estimation of ρ 
via a parametric probabilistic model. Hence, the compres‑

Figure 2. An example of arithmetic coding
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sion shares the same training objective as prediction. There‑
fore, it can be interpreted as the link between the model log-
loss and the compression rate, providing theoretical support 
for the employment of LLM for source coding.
3.2 Error Correction Code Transformer

ECCT[48] belongs to the complementary Transformer-like 
module. It ensures the channel decoding reliability. Notably, 
ECCT involves specific preprocessing and post-processing 
steps to avoid overfitting effectively. Without the loss of gen‑
erality, before preprocessing, the syndrome of codes is de‑
fined by

syn ( )y ≔ Hyb = Hsign_to_bin (y ) =
1
2 H ( )1 - sign ( )y ∈ {0,1 }N - K (4).

This should be checked first upon receiving the signal 
since corruption could be detected immediately if syn (y ) is 
a non-zero vector. In other words, an all-zero syndrome en‑
sures that the received signal suffers no distortion. Note that 
the function sign_to_bin (·) could be viewed as a hard deci‑
sion on y and sign (·) here denotes a sign function defined by

sign ( )y
ì

í

î

ïïïï

ïïïï

1,        y > 0
0,        y = 0

-1,        y < 0
(5).

Next, ECCT constructs a 2N - K dimensional input em‑
bedding by concatenating the element-wise magnitude and 
syndrome vectors, such that
y͂ ≔ [ ]|| y ,syn ( )y ∈ R2N - K (6),

where [·,·] denotes vector/matrix concatenation and | y | de‑
notes the absolute value (magnitude) of y.

The objective of the decoder is to predict the multiplica‑
tive noise z͂ from y, where y = hxs + z = xs(h + xs z ) = xs z͂. 
Compared to traditional Transformer architectures[19], ECCT 
introduces two additional modules for positional reliability 
encoding and code aware self-attention, as shown in Fig. 4. 
Notably, ECCT processes the channel output y as input and 
generates a prediction ẑ of the multiplicative noise z͂. The 
key differences between ECCT and traditional Transformer 
architectures are highlighted in the dashed-line boxes in 
Fig. 4. Implementation details are provided in Appendix 2.

Finally, the training process aims to minimize the binary 
cross entropy (BCE) loss between the predicted noise ẑ and 
the multiplicative noise z͂, given by

loss = BCELoss ( )ẑ, z͂   =

- 1
N  ∑i( )bin ( )z͂ i ⋅ log ( )σ ( )ẑ i +

( )1 - bin ( )z͂ i ⋅ log ( )1 - σ ( )ẑ i

(7),

Figure 3. LLM-based arithmetic encoding and decoding
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where σ ( ⋅ ) denotes the sigmoid activation function.
Remark 2: The estimation of multiplicative noise is repre‑

sented as ẑ = f ( y͂ ), while the post-processing step estimates 
x by x̂ = sign_to_bin (y ⋅ f ( y͂ ) ). Given that, for correct esti‑
mation, sign ( ẑ ) = sign ( z͂ ). Therefore,
x̂ = sign_to_bin ( )y ⋅ f ( )y͂ =
sign_to_bin ( )xs z͂ ⋅ ẑ = sign_to_bin ( )xs = x (8).
In other words, ECCT contributes to noise-free channel 

coding.
4 Experiments

In this section, we compare the proposed method with tra‑
ditional SSCC approaches and existing JSCC solutions under 
both AWGN and Rayleigh fading channels.
4.1 Simulation Settings

To facilitate comparison, we utilize a pre-processed data‑

set consisting of the standard proceedings of the European 
Parliament[49]. A segment of this dataset is selected as an ex‑
ample and fed as the source to a Generative Pre-Trained 
Transformer 2 (GPT2)[50] model for source coding. In this nu‑
merical experiment, we primarily choose the smallest GPT2-
base model with 124 million parameters, while larger models 
(e. g., the 355-million-parameter GPT2-medium, the 774-
million-parameter GPT2-large, and the1.5-billion-parameter 
GPT2-XL) are subsequently used for comparative analysis. 
Arithmetic coding based on the LLM is configured with a 
precision limit of 31 bits. For channel coding, we adopt an 
LDPC code with an information word length of 24 and a code‑
word length of 49, denoted as LDPC(49, 24), resulting in a 
code rate close to 1/2. Subsequently, ECCT is used for alge‑
braic block code decoding, which is capable of training on 
diverse error correction codes. The hyperparameter settings 
for ECCT training are detailed in Table 2. For comparative 
analysis, we select Deep Learning-Based Semantic Commu‑
nication (DeepSC)[12], Universal Transformer (UT)[14], and UT 

Figure 4. ECCT architecture
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with quantization* as benchmark JSCC algorithms. Consider‑
ing the subsequent signal-to-noise ratio (SNR) performance 
comparison, both algorithms are trained using mixed preci‑
sion (i. e., float16), which, as discussed later, has a minimal 
negative impact on SNR computation. Key parameters used 
for training DeepSC and UT are also listed in Table 2. Be‑
sides, the traditional approach employs Huffman coding for 
source coding. Furthermore, bilingual evaluation understudy 
(BLEU)[51] and semantic similarity measured by BERT[52] are 
used to measure performance, as these metrics are widely 
recognized in natural language processing.

Most existing SemCom works evaluate the performance with 
respect to the SNR = 10 log10 (E tb N0 ) dB, where E tb denotes 
the energy associated with transmitting a single bit after 
source/channel coding and digital modulation, and N0 repre‑
sents the noise power spectral density. However, since differ‑
ent coding and modulation schemes across different communi‑
cation methodologies result in varying numbers of bits trans‑
mitted over the physical channel, such a comparative metric 
of SNR ignores the differences in delivering different numbers 
of bits. Instead, referring to the total energy consumption E total by sending Numunified bits through the physical channel in an 
LLM-based SSCC system, we propose a consistent definition 
of SNR in terms of an LLM-based SSCC reference baseline 
SNRunified, as a function of the practically employed bits Num. 

Mathematically, this is expressed as:
SNR = 10log10 ( E total

N0 ⋅ Num ) =

10log10 ( E total
N0 ⋅ Numunified

× NumunifiedNum ) =

SNRunified + 10 log10 ( )NumunifiedNum (9),

where SNRunified is used as an independent variable for align‑
ing E total, while for bit-oriented transmission (resp. float-
based JSCC), Num denotes the number of bits (resp. float 
vectors) transmitted through the channel.

On the other hand, as mentioned in Section 1 and Ref. 
[33], deep learning-based JSCC systems extract the semantic 
feature of information to embed vectors in latent space, 
which is incompatible with digital communication systems. 
For JSCC methodologies like UT[14] and DeepSC[12], transmit‑
ting a float number certainly consumes far more energy than 
delivering a binary bit. In this case, if float16 is adopted, we 
can roughly assume it consumes an additional 10 ×
log10 (16) ≈ 12.04 1 dB. Hence, for the float-based JSCC 
methods, the unified evaluation metric is further modified to 
maintain a consistent energy consumption across different 
methodologies. In summary,

SNR =
ì

í

î

ï
ïï
ï

ï
ïï
ï

SNRunified + 10log10( )NumunifiedNum + 12.041,     float based
SNRunified + 10log10( )NumunifiedNum ,                otherwise

(10).
During evaluation, experiments are conducted for differ‑

ent schemes in terms of SNRunified.
4.2 Numerical Results

In this section, we implement the GPT2-base model as a 
compressor and ECCT-complemented LDPC(49, 24) as the 
error correction code, and compare it with DeepSC, UT, UT 
with quantization and the classical SSCC encompassing Huff‑
man coding and ECCT (Fig. 5). The results demonstrate the 
superior performance of the proposed SSCC over the other 
three schemes. Similarly, we evaluate the performance under 
a Rayleigh fading channel in Fig. 6, where the results show 
that our system has a clear advantage in terms of the word-
level BLEU score. However, in terms of semantic similarity, 
both the LLM-based and the traditional Huffman-based 
SSCC systems exhibit some disadvantages at lower SNRs, 
but still maintain a noticeable advantage at high SNRs.

In addition to presenting our key experimental results 

* Compared to DeepSC and UT that directly transmit the encodes floats, UT with quantization maps the encoding results to a fixed number (30) of bits for transmission.

Table 2. Mainly used hyperparameters in the experiments

Model

ECCT

DeepSC

UT

Hyperparameter
Learning rate

Batch size
Number of decoder layers
Dimension of embedding

Number of attention heads
Learning rate

Batch size
Number of encoder/decoder layers

Dimension of embedding
Dimension of FFN

Number of attention heads
Learning rate

Batch size
Number of encoder/decoder layers

Dimension of embedding
Dimension of FFN

Number of attention heads

Value
10-4

128
6

32
8

10-4

64
4

128
512

8
10-4

64
3

128
1 024

8
DeepSC: Deep Learning‑Based Semantic 

Communication
ECCT: Error Correction Code Transformer 

FFN: Feed Forward Network 
LLM: Large Language Model
UT: Universal Transformer
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with SNRunified as the alignment metric, Fig. 7 provides perfor‑
mance comparisons using traditional SNR alignment, as well 
as the ratio of E total used by different systems over our LLM-
based solution. This illustrates the additional energy con‑
sumption of JSCC systems in achieving superior perfor‑
mance. Apparently, JSCC systems in SemCom achieve sig‑
nificant gains mainly due to the extra energy consumption.

Afterward, we validate the contributing effectiveness of 
ECCT[32] by comparing the performance of error correction 
codes with different coding rates under the same code 
length. Without loss of generality, the evaluation results 
based on LDPC under AWGN and Rayleigh fading channels 
are given in Fig. 8. Notably, while the work in Ref. [32] does 

not include Rayleigh channel results, inspired by the subse‑
quent work on Denoising Diffusion Error Correction Codes 
(DDECC[53]), we extend ECCT to Rayleigh channels in a simi‑
lar manner. It can be observed from Fig. 8 that compared to 
traditional LDPC decoding methods such as bit-flipping, 
ECCT provides consistent performance improvements. Fur‑
thermore, for error correction codes of the same length, lower 
coding rates demonstrate better recovery of noisy signals un‑
der the same SNR. More importantly, without ECCT, tradi‑
tional algorithms struggle to decode noisy signals under Ray‑
leigh channels effectively, and reducing the coding rate 
slightly improves the performance trivially. However, ECCT 
trained under the Rayleigh channel achieves as competitive 

Figure 6. BLEU and similarity scores versus SNRunified are evaluated for the same number of transmitted symbols. The proposed LLM-based SSCC is 
compared with Huffman coding with LDPC (49, 24) in BPSK; DeepSC, UT, and UT with quantization trained under the Rayleigh fading channel

AC: arithmetic coding BLEU: bilingual evaluation understudy DeepSC: Deep Learning-Based Semantic Communication ECCT: Error Correction Code Transformer LLM: Large Language Model SNR: signal-to-noise ratio UT: Universal Transformer

AC: arithmetic coding BLEU: bilingual evaluation understudy DeepSC: Deep Learning-Based Semantic Communication ECCT: Error Correction Code Transformer LLM: Large Language Model SNR: signal-to-noise ratio UT: Universal Transformer

Figure 5. BLEU and similarity scores versus SNRunified are evaluated for the same number of transmitted symbols. The proposed LLM-based SSCC is 
compared with Huffman coding with LDPC (49, 24) in BPSK, DeepSC, UT, and UT with quantization under the AWGN channel
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performance as that under the AWGN channel.
Considering the scaling law and emergent abilities of 

LLMs, we evaluate the performance by combining different 
models from the GPT2 family with ECCT-complemented 
LDPC channel coding (i. e., a high-rate LDPC(121, 110) 
code). Both the end-to-end SSCC performance in Fig. 9 and 
the compression rate in Fig. 10 indicate a notable perfor‑
mance improvement after adopting a model larger than 
GPT2. However, the performance difference among GPT2-
medium, GPT2-large, and GPT2-XL is marginal. We hypoth‑
esize that while increasing the model size beyond a certain 
threshold contributes significantly to system performance, 

variations within a specific range of model scales yield di‑
minishing returns. Furthermore, inspired by Ref. [54], the 
performance comparison with Zlib and static Huffman cod‑
ing in Fig. 10 demonstrates that LLM-based arithmetic cod‑
ing significantly outperforms traditional methods. Moreover, 
a scaling law is observed in the compression performance, 
which somewhat corroborates the findings of Ref. [54].

The experimental results presented in Table 3 further in‑
vestigate the influence of the token block size on perfor‑
mance. It can be observed that at higher SNR levels, the per‑
formance generally improves as the block size increases, in‑
dicating that larger block sizes facilitate enhanced semantic 

Figure 8. BLEU-4 score versus SNRunified for the same number of transmitted symbols, with different code rates using LDPC (49, 24) / / LDPC (49, 30) / / 
LDPC (49, 36) in BPSK, compared with the situations removing ECCT, under (a) AWGN and (b) Rayleigh fading channels

AWGN: additive white Gaussian noise BLEU: bilingual evaluation understudy ECCT: Error Correction Code Transformer LDPC: Low-Density Parity-Check SNR: signal-to-noise ratio

Figure 7. BLEU-4 score versus SNR is evaluated for the same number of transmitted symbols. The proposed LLM-based SSCC is compared with 
Huffman coding with LDPC (49, 24) in BPSK (without ECCT), DeepSC, UT, and UT with quantization trained under (a) AWGN and (b) Rayleigh 

fading channels; (c) shows the ratio of E total among different systems

AC: arithmetic coding AWGN: additive white Gaussian noise BLEU: bilingual evaluation understudy DeepSC: Deep Learning-Based Semantic Communication ECCT: Error Correction Code Transformer LLM: Large Language Model SNR: signal-to-noise ratio UT: Universal Transformer
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preservation due to their ability to capture more contextual 
information. However, at lower SNR levels, the performance 
declines with an increase in the block size, suggesting that 
smaller blocks may be more resilient to avoid cumulative 

source decoding errors in these challenging scenarios.
5 Conclusions and Discussions

In this paper, we present a comprehensive analysis and 
evaluation of SSCC, with a comprehensive comparison to 
JSCC in the context of SemCom. Our proposed SSCC frame‑
work, which integrates LLMs for source coding and ECCT for 
enhanced channel coding, demonstrates significant perfor‑
mance improvements over JSCC in terms of recovery perfor‑
mance at both the word and semantic levels under both 
AWGN and Rayleigh fading channels. This highlights the po‑
tential effectiveness of SSCC in information transmission. In 
particular, through extensive experiments, we validate the 
strong compressive capability of LLMs to eliminate redun‑
dancy in text and the robustness of ECCT in enhancing de‑
coding reliability under various channel conditions. In a 
word, separate source channel coding is still what we need.

Nevertheless, despite the validated performance superior‑
ity of SSCC, there remain several important issues worthy of 
further clarification and investigation.

1) The performance evaluation of text transmission sounds 
inspiring. The proposed SSCC framework is channel-
agnostic, while given the well-known generality issues, the 
DNN-based JSCC faces a performance decline when the 
channel changes significantly. However, an extension to im‑
age transmission can be more challenging, and several is‑
sues like sequential tokenization require effective solutions. 
In this regard, potential solutions can incorporate patch divi‑
sion from Vision Transformer (ViT) to replace text tokeniza‑
tion, thereby segmenting images into semantic units for en‑
coding. Consequently, the LLM-AC text predictor can be 
transformed into a probability modeler for image patches. 
Furthermore, the iterative decoding of ECCT can mitigate 
the error propagation issues in traditional JSCC, which is 
particularly crucial for multimedia transmission with high-

Table 3. Influence of token block sizes on system performance during 
LLM-based arithmetic source encoding for SNR={−6, 0, 6}

Block 
size
16
32
64

128

Similarity
−6

0.770 8
0.712 3
0.700 1
0.758 7

0
0.915 7
0.935 9
0.893 8
0.857 3

6
0.999 3
0.998 4
0.999 9
0.999 9

BLEU-1
−6

0.197 5
0.172 5
0.116 0
0.183 1

0
0.645 2
0.584 2
0.580 1
0.434 4

6
0.987 7
0.978 7
0.996 9
0.999 9

BLEU-4
−6

0.007 2
0.005 5
0.001 8
0.003 8

0
0.508 1
0.466 6
0.427 0
0.252 9

6
0.983 0
0.969 4
0.992 2
0.999 9

BLEU: bilingual evaluation understudy
LLM: Large Language Model 

SNR: signal-to-noise ratio

Figure 9. BLEU and similarity scores of models versus SNRunified, with different parameter scales (GPT2, GPT2-medium, GPT2-large, GPT2-XL), 
using LDPC (121, 110) as the error correction code

BLEU: bilingual evaluation understudy       GPT: Generative Pre-trained Transformer       SNR: signal-to-noise ratio

Figure 10. Compression rate comparison between traditional methods 
(Zlib and Huffman coding) and LLM-AC

GPT: Generative Pre-Trained Transformer
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fidelity requirements. On the other hand, our experimental 
experience indicates the accuracy of channel coding is of vi‑
tal importance for end-to-end performance. Hence, we only 
consider a relatively low, fixed code rate here. However, sys‑
tematic tuning of the code rate is also a worthwhile direction 
for future research.

2) This paper only considers the classical JSCC design, 
while ignoring the latest quantization and digital modulation 
techniques that have emerged in the development of JSCC. 
For example, Refs. [9] and [10] show that utilizing a sparsity 
module to quantize the image embedding can yield signifi‑
cant performance gain. However, Refs. [9] and [10] have not 
compared their approaches with the remarkable capabilities 
of LLMs, and thus it remains unclear whether these amend‑
ments would enable JSCC to surpass LLM-based SSCC in a 
fair comparison. Nevertheless, given the inspiring results in 
this paper, there is no doubt that SSCC should be carefully 
improved rather than dismissed.

3) What we have to acknowledge is that integrating LLMs 
into the SSCC framework requires substantial computational 
resources for both encoding and decoding processes. How‑
ever, we currently leverage pre-trained LLMs, which possess 
inherent generalization capabilities and can handle a broad 
range of natural language datasets. This contrasts with JSCC 
methods, which often rely on training with specific datasets 
to achieve superior performance. If a specific dataset is em‑
ployed, we can explore the possibility of model distillation. 
By utilizing a Transformer model with significantly fewer pa‑
rameters while retaining the LLM’s tokenizer and perform‑
ing self-supervised training on the target dataset, we can sub‑
stantially reduce computational overhead while maintaining 
reasonable performance. We will further investigate model 
distillation in future work.

4) The discussions on JSCC are limited to the scenario to 
recover the semantics as accurately as possible. For Sem‑
Com[1], effectiveness-level or pragmatic communications may 
target at accomplishing different tasks under remotely con‑
trolled, noisy environments, rather than simple recovery of 
accurate semantics. In such cases, the underlying philoso‑
phy of JSCC may offer unique advantages.

5) Extensive works have been conducted to improve the 
performance of model-free decoders. For example, Ref. [55] 
proposes a systematic and double mask eliminating the diffi‑
culty of identifying the optimal parity-check matrix (PCM) 
from numerous candidatesfrom the same code. For perfor‑
mance enhancement on moderate code-length decoding, U-
ECCT is proposed in Ref. [56] inspired by U-Net, while in 
Ref. [53], the Denoising Diffusion Probabilistic Model 
(DDPM)[57] is employed to model the transmission over chan‑
nels as a diffusion process. Furthermore, a foundation model 
for channel codes is proposed in Ref. [58] for application to 
unseen codes. Therefore, these recent works are worthy to be 
evaluated in the SSCC framework.
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Appendix 1: Pseudo code of finite precision 
arithmetic codec

Appendix A: Pseudo code for encoder

Algorithm 1 Finite-precision arithmetic encoding
Require: Nk: Current number of emitted bits mNk

Require: pcum(Di|t1:k ): Cumulative probability of token 
tk + 1 = Di ∈ D given first k tokens

Require: lk, uk: Current interval determined by the first k 
tokens

Require: εk: Number of scaling bits
1.  Initialization:
2.  Nk + 1 ← Nk3.  lk + 1 ← lk + (uk - lk ) pcum(Di - 1|t1:k ) // If k = 0, use 

pcum(Di - 1 )
4.  hk + 1 ← lk + (uk - lk ) pcum(Di|t1:k ) // If k = 0, use 

pcum(Di )
5.  εk + 1 ← εk6.  Scaling:
7.  while any of the scaling conditions is met do
8.          if uk + 1 < 0. 5then
9.                  // Scaling 1
10.                lk + 1, uk + 1 ← 2lk + 1, 2uk + 111.                mNk + 1 + 1 ← 0 // Emit one bit􀆳s 0
12.                mNk + 1 + 2:Nk + 1 + 1 + εk + 1 ← 1 // Emit εk + 1 bits􀆳 1
13.                Nk + 1 ← Nk + 1 + 1 + εk + 114.                εk + 1 ← 0
15.          else if lk + 1 ≥ 0. 5 then
16.                // Scaling 2
17.                lk + 1, uk + 1 ← 2 ( lk + 1 - 0. 5) , 2 (uk + 1 - 0. 5)
18.                mNk + 1 + 1 ← 1 // Emit one bit􀆳s 1
19.                mNk + 1 + 2:Nk + 1 + 1 + εk + 1 ← 0 // Emit εk + 1 bits􀆳 0
20.                Nk + 1 ← Nk + 1 + 1 + εk + 121.                εk + 1 ← 0
22.           else if 0. 25 ≤ lk + 1 < 0. 5 ≤ uk + 1 < 0. 75  then

23.                // Scaling 3
24.                lk + 1, uk + 1 ← 2 ( lk + 1 - 0. 25) , 2 (uk + 1 - 0. 25)
25.                εk + 1 ← εk + 1 + 1
26.           end if
27.  end while
28.  return Nk + 1, mNk + 1:Nk + 1 // Updated emitted bits

Appendix B: Pseudo code for decoder

Algorithm 2 Finite-precision arithmetic decoding
Require: Kn: Current number of decoded tokens
Require: pcum(Di|t1:Kn ): Cumulative probability of token 

tKn + 1 + 1 = Di ∈ D given first Kn tokens
Require: ln, un: Current interval determined by the first n 

bits
Require: lKn

, uKn
: Interval of sequence t1:Kn

 that has been 
decoded

1.  Initialization:
2.  Kn + 1 ← Kn3.  lKn + 1,hKn + 1 ← lKn

,hKn4.  if the (n + 1)-th bit mn + 1 = 0 then

5.          ln + 1,hn + 1 ← ln, 1
2 ( ln + hn )

6.  else

7.          ln + 1,hn + 1 ← 1
2 ( ln + hn ) ,hn

8.  end if
9.  while Not End-of-Sentence symbol do
10.        Search:
11.        Find Di ∈ D such that:
12.              L = lKn + 1 + (uKn + 1 - lKn + 1 ) pcum(Di - 1|t1:Kn ) // If 

Kn = 0, use pcum(Di - 1 )
13.           U = lKn + 1 + (uKn + 1 - lKn + 1 ) pcum(Di|t1:Kn ) // If 

Kn = 0, use pcum(Di )
14.                 L ≤ ln + 1 < un + 1 < U // i. e.  current interval 

of the n-th bit is included in the interval of Di15.         if Di exists then
16.                 Update:
17.                 Kn + 1 ← Kn + 1 + 1
18.                  tKn + 1 ← Di//Output Di to the token sequence t
19.                  lKn + 1, uKn + 1 ← L, U
20.                  Scaling: Similar to the Scaling in Algorithm 1
21.                  Go to Search
22.          else
23.                  return Kn + 1, tKn + 1:Kn + 124.           end if
25.  end while
26.  return Kn + 1, tKn + 1:Kn + 1 // Updated decoded tokens
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Appendix 2: Two key modules of ECCT

Appendix C: Positional reliability encoding
For the channel output y, the positional reliability encod‑

ing transforms each dimension of y͂ into a high d dimensional 
embedding ϕ, which enriches the information of input em‑
bedding vectors and replaces y͂ as the input of ECCT.  The 
transformation is defined by

ϕi = ì
í
î

ïï

ïïïï

|| y i W i,   if  i ≤ N

bin_to_sign ( )syn ( )y i - N + 1 W i,  otherwise (11),

where {W i ∈ Rd }2N - K
i = 1  denotes the learnable embedding ma‑

trix representing the bit􀆳s position-dependent one-hot encod‑
ing.  The encoding method corresponds to the input reliabili‑
ty and is positional, since unreliable information of low mag‑
nitude would collapse to the origin, while the syndrome 
scales negatively.  Hence, it is termed positional reliability 
encoding.
Appendix D: Code-aware self-attention

The code-aware attention mask mechanism aims to inte‑
grate code-specific sparse marks that incorporate the inher‑
ent structural characteristics of their respective PCM as the 
domain knowledge.  Given a codeword defined by the genera‑
tor matrix G and parity check matrix H, the attention mask is 
defined by g (H ) : { 0, 1 }( )n - k × n → {-∞, 0 }( )2n - k × ( )2n - k , the 
construction of which is shown in Algorithm 3.  Then, the 
code-aware self-attention mechanism could be represented as

AH( )Q, K, V = Softmax ( )QKT + g ( )H

d
V (12),

where Q, K* and V denote the query, key and value in self-at‑
tention.  During the implementation, the code-aware atten‑
tion mask mechanism is used as an enhancement of the 
multi-head-attention module in the classical Transformer ar‑
chitecture.

Algorithm 3 Pseudo code of building the attention mask
Require: parity-check matrix H of error correction code 

Ce(N, K )
1.  mask ← eye (2N - K )
2.  for i = 1, 2,…, N - K  do
3.         idx ← where (H [ i] == 1)
4.         for j in idx do
5.                mask[N + i, j ] , mask[ j, N + i] ← 1
6.                for l in idx do

7.                       mask[ j, l] , mask[ l, j ] ← 1
8.                end for
9.          end for
10.  end for
11.  mask ← -∞ (¬mask)
12.  return mask // Output attention mask g (H )
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1 Introduction

With the rapid advancement of mobile communica‑
tion technologies, 6G communication networks 
have gained widespread attention as the next fron‑
tier in modern communication systems. A charac‑

teristic of 6G networks is the integration of artificial intelli‑
gence (AI) and network architecture, a concept termed AI-
native communication[1]. The convergence of AI and communi‑
cation technologies will transform network operations, en‑
abling autonomous decision-making, dynamic resource man‑
agement, and seamless adaptation to changing network condi‑
tions[2]. Meanwhile, AI-native communication has become a 
critical enabling technology for 6G, capturing the attention of 
academic and industrial communities worldwide. However, re‑
alizing AI-native communication functionality requires a ro‑

bust foundation of supporting technologies to ensure flexibil‑
ity, scalability, and efficiency for network operations. As an es‑
sential component of AI-native networks, the core network 
(CN) facilitates real-time data collection and intelligent re‑
source scheduling[3]. By embedding AI directly into its archi‑
tecture, the CN ensures seamless coordination among different 
network functions (NFs), enabling the dynamic adaptability 
and scalability essential for 6G networks[4]. Therefore, tech‑
nologies such as network function virtualization (NFV), 
software-defined networking (SDN), and containerization have 
also been integrated into research on the intelligent evolution 
of the CN. NFV transforms dedicated NFs into virtualized soft‑
ware instances[5], reducing dependence on dedicated hardware 
and simplifying the AI-native network architecture. This also 
enables the seamless integration of AI models into network 
management, control, and optimization. SDN decouples the 
control and data planes, enabling centralized management and 
dynamic routing optimization, which supports real-time moni‑
toring and adjustment of data flow paths, creating improved 
network conditions for AI models[6]. Additionally, containeriza‑

This work was supported by the National Key Research and Development 
Program of China under Grant No. 2023YFE0200700, National Natural Sci⁃
ence Foundation of China under Grant No. 62171474, and ZTE Industry-
University-Institute Cooperation Funds under Grant No. IA20241014013.
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tion provides modularity and lightweight deployment capabili‑
ties, allowing efficient deployment, management, and updating 
of AI models, thus providing flexible, efficient, and scalable 
infrastructure support for AI-native networks[7]. Although 
these techniques improve the flexibility, robustness, and effi‑
ciency of the CN, enabling better deployment and resource 
flexibility for AI-native networks, they alone are insufficient to 
fully realize the potential of AI-native capabilities[8]. Bridging 
this gap requires the incorporation of advanced data analysis 
and decision-making mechanisms[9], which are essential for 
achieving the autonomous intelligence envisioned in AI-native 
networks. The network data analytics function (NWDAF) ad‑
dresses this critical gap by serving as an independent intelli‑
gent NF introduced in the CN, as part of the 5G standard pro‑
tocol proposed by the 3rd Generation Partnership Project 
(3GPP) first[10]. By leveraging the flexibility and scalability en‑
abled by NFV, SDN, and containerization, the NWDAF inte‑
grates advanced data analytics and machine learning tech‑
niques to effectively process and analyze large-scale datasets 
within the CN.

NFV enables the NWDAF to be dynamically deployed and 
scaled on demand, allowing real-time adjustment of comput‑
ing resources based on network traffic. SDN facilitates multi-
dimensional data collection from various NFs while enabling 
flexible traffic management. Additionally, containerization en‑
hances the adaptability of the NWDAF by supporting rapid 
deployment, migration, and scaling across diverse environ‑
ments, thereby improving the modularity and scalability of the 
data analysis process. These enable the NWDAF to provide in‑
telligent data-driven decision-making support for network opti‑
mization and management. Through sophisticated data pro‑
cessing and predictive modeling, the NWDAF addresses criti‑
cal challenges in modern networks, including resource alloca‑
tion, load balancing, and fault recovery[11]. As a result, it facili‑
tates the evolution of the CN from traditional reactive manage‑
ment to more intelligent and autonomous operational models, 
paving the way for more efficient, adaptive, and dynamic net‑
work management[12].

Despite the significant flexibility and intelligent potential 
demonstrated by the NWDAF through the integration of NFV, 
SDN, and containerization technologies, its efficient implemen‑
tation still faces two core challenges. First, data collection 
serves as the foundation for both NWDAF and AI-native net‑
work implementation. Unlike traditional NFs, the NWDAF re‑
quires a comprehensive and real-time collection of network 
state data to support accurate analytics and decision-
making[13]. This is particularly critical in scenarios such as 
user plane function (UPF) scaling, where real-time data on 
UPF load and resource availability must be continuously gath‑
ered to enable dynamic and efficient resource allocation. Sec‑
ond, AI-native capabilities demand the seamless embedding of 
AI into the network architecture rather than the standalone ap‑
plication of machine learning (ML) models[14]. Given the diver‑

sity of network scenarios, the NWDAF must include a dedi‑
cated function to manage the training, storage, and dynamic or‑
chestration of various AI models, ensuring adaptability and 
scalability in meeting specific operational requirements. Spe‑
cifically, in the context of UPF optimization, the NWDAF can 
facilitate seamless UPF scaling to accommodate varying traffic 
demands thus optimizing network performance. In light of 
these challenges, existing research has investigated various as‑
pects of these challenges. For instance, MEKRACHE et al. 
proposed a microservice architecture for the NWDAF, employ‑
ing a Long Short-Term Memory (LSTM) auto-encoder to detect 
abnormal traffic generated by user equipment (UE), utilizing 
the Milano dataset for network data analysis[15]. Furthermore, 
NISHA et al. proposed a network load prediction and anomaly 
detection method and tested it using various machine learning 
methods[16]. Their work employed a comprehensive dataset sup‑
porting 5G networks. However, these studies primarily rely on 
publicly available or simulated datasets, focusing on optimiz‑
ing network performance for a specific scenario, without imple‑
menting the complete pipeline from data collection to data 
analysis. SEVGICAN et al. proposed a system for intelligent 
network analytics using ML techniques, comparing the perfor‑
mance of multiple machine learning models[17]. MANIAS et al. 
proposed a prototype system for the NWDAF within the CN, 
employing data-driven techniques and unsupervised learning 
to analyze NF interactions[18]. ZHANG et al. applied fair feder‑
ated learning (FL) to the 3GPP-standard NWDAF architec‑
ture, integrating a multi-task ML model for anomaly traffic de‑
tection across different types of user devices[19]. Most existing 
studies focus on singular optimization tasks, often overlooking 
the comprehensive management of the model lifecycle. As a re‑
sult, critical aspects such as real-time data collection, dy‑
namic model training, and model orchestration across various 
scenarios remain underexplored. This limitation significantly 
hinders the practicality and generalization capability of mod‑
els in real-world network environments. To address these chal‑
lenges, this paper makes the following contributions:

1) An AI-native NWDAF architecture is designed to inte‑
grate the functionalities for data collection and management, 
providing a solution for complex data processing in 6G net‑
work environments.

2) A specialized module for model training and manage‑
ment is designed to enable dynamic adaptation of AI models 
to diverse scenarios, effectively meeting the intelligent man‑
agement requirements of 6G networks.

3) An AI-native network testbed is constructed to evaluate 
the designed architecture functionalities, including data col‑
lection, model training, and management. Meanwhile, the UPF 
scaling scenarios are adopted to validate the feasibility and ef‑
fectiveness of the proposed architecture.

The rest of the paper is structured as follows: Section 2 
introduces the AI-native NWDAF architecture. Section 3 
discusses system deployment and experimental validation. 
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Section 4 concludes the paper and outlines directions for fu‑
ture research.
2 System Architecture

To enhance the intelligent capabilities of the 6G CN, this 
paper proposes a systematic approach through a novel 
NWDAF architecture. As shown in Fig. 1, the proposed sys‑
tem architecture comprises two layers: the infrastructure layer 
and the NWDAF service layer. The infrastructure layer is 
implemented on Kubernetes, providing functionalities for net‑
work monitoring and optimization. It detects the network envi‑
ronment, orchestrates network instances, and provides net‑
work data to NWDAF consumers for optimization through in‑
telligent algorithms. The NWDAF service layer contains re‑
quired NFs to implement the CN, with each NF independently 
deployed using the containerization technology. The NWDAF 
functional architecture consists of two key components: data 
collection and management (DCM) and model training and 
management (MTM). DCM is responsible for data collection, 
storage, and distribution, ensuring a continuous supply of 
high-quality data for the MTM. MTM focuses on model train‑
ing and analysis, while managing various ML models to adapt 
to specific scenarios. The proposed architecture encompasses 
the entire process from data collection to model training and 
application, enabling the system to achieve autonomous 
decision-making. Compared to traditional network architec‑
tures or those with externally attached AI components, it pro‑
vides enhanced flexibility and intelligence.
2.1 Data Collection and Management

DCM serves as a fundamental component of the proposed 
architecture, functioning as the basis of model training and 
analysis. This module encompasses three functions: data col‑
lection, data storage, and data distribution. NWDAF collects 
data from multiple NFs, including the access and mobility 

management function (AMF), session management function 
(SMF), and UPF, which is subsequently stored for subsequent 
analysis and utilization.

To achieve efficient data collection and management, the 
system leverages Prometheus as the data collection framework. 
As illustrated in Fig. 2, each NF consists of two modules: the 

Figure 1. System functional architecture

ADRF: analytics data repository functionAnLF: analytics logical function MTLF: model training logical functionNF: network function NWDAF: network data analytics function

Figure 2. Data collection and management

ADRF: analytics data repository function NF: network function NWDAF: network data analytics function

NWDAF service layer

Infrastructure layer

Kubernetes
Network monitoring and optimization

NF 1 NF 2 NF 3 … NWDAF

NWDAF
Communication module

Intelligent module
Data collection and management

Collection

Distribution
Storage

Model training and management
MTLF

AnLF
ADRF

NF

Service processing Data processing

Data aggregation

Function module

Communication module

Base interface Prometheus data collection interface

Request Response

NF consumer

NWDAF consumer
ADRFRequest

Response

47



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

HE Shiwen, PENG Shilin, DONG Haolei, WANG Liangpeng, AN Zhenyu 

Special Topic   Exploration of NWDAF Development Architecture for 6G AI-Native Networks

function module and the communication module. The function 
module implements all NF 􀆳s functionalities and handles vari‑
ous services. The communication module manages external 
communication, comprising the system 􀆳 s base interface and 
the customized Prometheus data collection interface. The 
NWDAF performs data collection through the Prometheus 
data collection interface, which operates in parallel with the 
signal processing tasks within the NFs. This approach by‑
passes the base interface, such as traditional N-interface com‑
munication between NFs. This design not only avoids interfer‑
ence with the service workflows of the NFs, but also ensures 
high efficiency and reliability in the data collection process. 
Specifically, when an NF consumer initiates a processing re‑
quest, the NF executes the task within its function module and 
returns the results to the consumer without interruption. Mean‑
while, the specified data are recorded and stored in a cache. 
Subsequently, the data are processed and aggregated within 
the NF, and then uploaded to the analytics data repository 
function (ADRF) database via the data collection interface.

The ADRF database is implemented through Prometheus. It 
serves as a unified data storage center, which provides a reli‑
able data source for subsequent model training and analysis. 
This architectural design enhances the flexibility of data man‑
agement while laying a solid foundation for the NWDAF to re‑
alize AI-native capabilities.
2.2 Model Training and Management

MTM is a core component of the NWDAF and plays a piv‑
otal role in realizing the intelligent capabilities of the CN. The 
MTM architecture, as shown in Fig. 3, encompasses three key 
components: the model training logical function (MTLF), ana‑
lytics logical function (AnLF), and ADRF. MTLF serves as the 
central component for training ML models within the NWDAF. 
It acquires the required data from the ADRF database through 
the data interface, where the data is preprocessed to ensure 
data quality, format, and consistency. Subsequently, the se‑
lected model is trained using the prepared data. Once training 
is completed, the trained model weights can be saved and 
stored in the specific model repository of the ADRF. Addition‑
ally, historical data from the ADRF can be used for external 
model training, with the corresponding model weights saved in 
the same model repository of the ADRF. The AnLF is respon‑
sible for analyzing real-time data generated by the network, us‑
ing models trained by the MTLF and generating relevant 
analysis results. By analyzing diverse network datasets, the 
AnLF supports applications such as traffic prediction, network 
load balancing, and anomaly detection, thereby facilitating in‑
telligent network optimization. The AnLF incorporates both 
data interfaces and model interfaces. The data interfaces en‑
able the AnLF to acquire necessary network data from the 
ADRF and other NFs, ensuring that analyses are based on the 
latest data. Meanwhile, the model interfaces allow the AnLF to 
dynamically select and apply the most appropriate trained 

models, ensuring optimal performance in different scenarios. 
Upon completion of the model analysis, the AnLF feeds the re‑
sults back to the NWDAF consumer. These results can be di‑
rectly utilized for decision-making to enhance overall network 
intelligence. Beyond model training and analysis, model stor‑
age emerges as a critical consideration in the NWDAF. In this 
system, the MTLF and AnLF specifically focus on model train‑
ing and analysis, without incorporating model storage. Conse‑
quently, an independent machine learning model storage mod‑
ule is implemented. Following model training in the MTLF, in‑
formation such as version numbers and training time is stored 
alongside the model repository. This system facilitates version 
management, access control, and state monitoring through the 
model management function.

The design of the MTLF offers significant advantages in im‑
proving the performance and resource utilization of 6G net‑
works, promoting AI-native capabilities in 6G. Through the co‑
ordinated operation of its three modules, the system can ad‑
dress single optimization objectives such as load balancing, as 
well as multiple optimization objectives like improving energy 
efficiency. Due to the complexity of network environments, a 
single model often cannot perform well in all scenarios. There‑
fore, the MTLF trains multiple models based on different NFs 
and scenarios, which are stored in the ADRF database. Once 
the NWDAF receives a service request from an NF consumer, 
the system deploys the most optimal model for that NF. For ex‑
ample, in the case of UPF scaling, the system queries the 
model repository for models that can meet the UPF scaling re‑

Figure 3. Model training and management
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quirements. Then, based on a predefined configuration table, 
the optimal model is selected by considering factors such as 
prediction time and model deployment time. This approach im‑
proves network performance and resource efficiency, offering 
a practical solution for realizing AI-native capabilities in 6G 
networks.
3 System Deployment and Experimental 

Validation
To evaluate the feasibility of the proposed system, a testbed 

is constructed based on Kubernetes. Each NF is encapsulated 
in a dedicated container and managed through unified orches‑
tration and deployment using Kubernetes. Subsequently, a 
UPF scaling experiment is conducted on the testbed to vali‑
date the intelligent capabilities of the system.
3.1 Deployment Strategy

The testbed leverages the open-source CN framework 
Open5GS as its foundation, which provides essential functions 
including the AMF, SMF, UPF, etc. Since Open Source 5G 
System (Open5GS) does not natively support the NWDAF, we 
develop and integrate a custom NWDAF, equipping it with ca‑
pabilities for data collection and model training. To support 
wireless signal processing, this testbed integrates OpenAir‑
Interface5G (OAI) and deploys Universal Software Radio Pe‑
ripheral (USRP) B210 to implement a Next-Generation Node 
B (gNB) and UE, effectively simulating real-world 5G network 
scenarios. The testbed adopts a microservice architecture uti‑
lizing containerization, encapsulating each NF as an indi‑
vidual container. Containers with similar NFs are strategically 
deployed on the same node, facilitating rapid updates, deploy‑
ments, and scaling of NFs while ensuring fault isolation and 
improving system resilience. As illustrated in Fig. 4, the sys‑
tem’s deployment structure comprises two servers designated 
as Control Plane and User Plane nodes within the CN. The 
Control Plane node hosts the AMF and SMF, while the User 
Plane node houses the UPF. Additionally, the gNB is encapsu‑
lated as a container and deployed on a dedicated Kubernetes 
node. To enable real communication, USRP B210 is con‑
nected to the host running the gNB container. Similarly, UE is 
deployed directly on its host and connected to another USRP 
B210 device to facilitate connectivity to the gNB.
3.2 Experiments

The experiments aim to validate the auto-scaling capabili‑
ties of the UPF and are conducted on the previously described 
testbed. The setup involves connecting four PCs to USRP 
B210 devices, utilizing OAI to simulate two user devices and 
two gNBs, which establish connectivity to the CN. This con‑
figuration enables two user devices to access the CN, with 
load generation on the UPF being achieved through data 
packet transmission between the user devices using the iPerf 
tool. The experiment simulates and verifies the process of ver‑

tical scaling. As shown in Fig. 5, vertical scaling involves in‑
creasing the resource allocation of a single pod, including 
CPU cores, memory capacity, and storage, to handle increased 
load. During the experiment, real-time data are collected and 
analyzed to ensure the system operates normally. Several key 
metrics from the AMF, SMF, and UPF are tracked to monitor 
the experiment process, including UPF metics such as traffic, 
CPU usage, and Radio Access Network (RAN) data (e.g., UE 
uplink/downlink traffic and bitrates). A total of 26 metrics re‑
lated to UPF scaling are collected, including UPF CPU usage, 
the data transfer rate, and the uplink/downlink throughput of 
UE. These data, comprising 600 samples, are continuously col‑
lected over a 10-minute period and utilized in model training. 
The UPF CPU usage after 30 s is used as the prediction target, 
while other collected related data serve as the training param‑

Figure 4. System deployment structure
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eters. When the predicted UPF CPU usage after 30 s exceeds 
70%, a UPF vertical scaling operation is triggered.

To evaluate the performance of UPF scaling across various 
scenarios, multiple ML models are trained using the collected 
data. These models include LSTM[20], Extreme Gradient Boost‑
ing (XGBoost) [21], and Recurrent Neural Networks (RNNs) [22]. 
The trained model weights are saved as files, offering advan‑
tages in terms of shareability and reduced storage require‑
ments. They are subsequently stored in a dedicated model re‑
pository. Finally, these models are invoked in the simulated 
environment, and scaling strategies are implemented based on 
the prediction results through the Kubernetes API.
3.3 Results

At the outset of the experiment, the relevant data from the 
AMF, SMF, and UPF are collected. As shown in Figs. 6a, 6b, 
and 6c, the data, including the number of user devices suc‑
cessfully connected and the number of UPF sessions, indicate 
that both user devices are successfully connected to the CN. 

Throughout the UE connection process to the CN, a large num‑
ber of requests are generated, leading to an increase in net‑
work traffic of the AMF and SMF around the 15th second, fol‑
lowed by a quick decline. N4 sessions refer to session in‑
stances created between the SMF and UPF to ensure commu‑
nication between the user plane and the control plane. Due to 
continuous data transmission, the number of N4 sessions in‑
creases to 50. Additionally, the UPF traffic values consistently 
remain around 60 Mbit/s during the communication process 
between the user devices, demonstrating successful data trans‑
mission between the terminals. These results indicate that 
when multiple user devices connect to the CN and engage in 
data transmission, the system successfully executes real-time 
data collection and analyzes the current system states.

Fig. 6d demonstrates how intensive data transmission be‑
tween user devices leads to UPF scaling . The blue line repre‑
sents the baseline case without scaling, while the other four 
lines show the results of using a threshold-based method and 
three ML models (LSTM, XGBoost, and RNN) for UPF scal‑

Figure 6. Data collection and algorithm comparison during the scaling process

AMF: access and mobility management functionLSTM: Long Short-Term Memory QoS: quality of serviceRNN: Recurrent Neural Network SMF: session management functionUE: user equipment UPF: user plane functionXGBoost: Extreme Gradient Boosting
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ing. The results show that all three ML models successfully 
predict the increase in CPU utilization and trigger scaling. 
The threshold-based method also triggers scaling successfully. 
However, compared to the threshold-based method, all three 
ML models require significantly less time. In addition, Table 1 
demonstrates the prediction accuracy of the three ML models. 
The results show that all three models achieve high accuracy, 
further confirming their satisfactory predictive capabilities. 
This experiment successfully validates the process of data col‑
lection and model analysis, demonstrating the advantages of 
using machine learning models for UPF scaling within the pro‑
posed architecture. Consequently, it further confirms the feasi‑
bility of the architecture presented in this paper.
4 Conclusions

This paper presents a novel NWDAF architecture designed 
to enhance the performance and scalability of AI-native 6G 
networks. The proposed architecture integrates data collec‑
tion, model training, and analysis, providing a robust solution 
for dynamic network management. In addition, a testbed is es‑
tablished to conduct data collection and model training, vali‑
dating the proposed framework with a specific focus on UPF 
overload and scaling scenarios. The experimental results dem‑
onstrate that the implementation of the ML models can effec‑
tively reduce the delay in UPF scaling, enhancing system re‑
sponsiveness and performance. Future research directions in‑
clude advancing the management of the ML models and ex‑
ploring the comparative advantages of different models across 
various scenarios. Additionally, the integration of AI-native 
networks with multiple domains, such as edge computing, will 
be investigated to enhance real-time decision-making and re‑
source allocation. Through these multi-domain integrations, 
the scalability, interoperability, and autonomous management 
of the network can be further enhanced.

References
[1] YANG B LIANG X, LIU S N, et al. Intelligent 6G wireless network with 

multi-dimensional information perception [J]. ZTE communications, 2023, 
21(2): 3–10. DOI: 10.12142/ZTECOM.202302002

[2] CHEN Z R, ZHANG Z Y, YANG Z H. Big AI models for 6G wireless 
networks: opportunities, challenges, and research directions [J]. IEEE 
wireless communications, 2024, 31(5): 164 – 172. DOI: 10.1109/
MWC.015.2300404

[3] HE S W, DONG H L, PENG S L, et al. Challenges and methods of con‑
structing a verification system for endogenous intelligent communication 
in wireless networks [J]. Mobile communications, 2024, 48(7): 2 – 14. 
DOI: 10.3969/j.issn.1006-1010.20240629-0001

[4] GAO Y CHEN J J, LI D P. Intelligence driven wireless networks in B5G 
and 6G era: a survey [J]. ZTE communications, 2024, 22(3): 99 – 105. 
DOI: 10.12142/ZTECOM.202403012

[5] AGIWAL M, ROY A, SAXENA N. Next generation 5G wireless networks: 
a comprehensive survey [J]. IEEE communications surveys and tutorials, 
2016, 18(3): 1617–1655. DOI: 10.1109/COMST.2016.2532458

[6] ZAIDI Z, FRIDERIKOS V, YOUSAF Z, et al. Will SDN be part of 5G? [J]. 
IEEE communications surveys and tutorials, 20(4): 3220 – 3258. DOI: 
10.1109/comst.2018.2836315

[7] LUONG D H, THIEU H T, OUTTAGARTS A, et al. Cloudification and au‑
toscaling orchestration for container-based mobile networks toward 5G: 
experimentation, challenges and perspectives [C]//Proc. IEEE 87th Ve‑
hicular Technology Conference (VTC Spring). IEEE, 2018: 1 – 7. DOI: 
10.1109/VTCSpring.2018.8417602

[8] QUAN Q. Intelligent and autonomous management in cloud-native future 
networks: a survey on related standards from an architectural perspective 
[J]. Future Internet, 2021, 13(2), 42. DOI: 10.3390/fi13020042

[9] HE S W. An endogenous intelligent architecture for wireless communica‑
tion networks [J]. Wireless networks, 2024, 30(2): 1069 – 1084. DOI: 
10.1007/s11276-023-03545-9

[10] 3GPP. Technical specification group services and system aspects; achi‑
tecture enhancements for 5G system (5GS) to support network data analyt‑
ics services: TS 23.288 [S]. 2023

[11] LEE J, SOLAT F, KIM T Y, et al. Federated learning-empowered mobile 
network management for 5G and beyond networks: from access to core 
[J]. IEEE communications surveys and tutorials, 2024, 26(3): 2176 –
2212. DOI: 10.1109/COMST.2024.3352910

[12] SAAD W, BENNIS M, CHEN M Z. A vision of 6G wireless systems: ap‑
plications, trends, technologies, and open research problems [J]. IEEE 
network, 2020, 34(3): 134–142. DOI: 10.1109/MNET.001.1900287

[13] GKONIS P K, NOMIKOS N, TRAKADAS P, et al. Leveraging network 
data analytics function and machine learning for data collection, resource 
optimization, security and privacy in 6G networks [J]. IEEE access, 2024, 
12: 21320–21336. DOI: 10.1109/ACCESS.2024.3359992

[14] WU W, ZHOU C H, LI M S, et al. AI-native network slicing for 6G net‑
works [J]. IEEE wireless communications, 29(1): 96–103. DOI: 10.1109/
mwc.001.2100338

[15] MEKRACHE A, BOUTIBA K, KSENTINI A. Combining network data 
analytics function and machine learning for abnormal traffic detection in 
beyond 5G [C]//Proc. IEEE Global Communications Conference. IEEE, 
2023: 1204–1209. DOI: 10.1109/GLOBECOM54140.2023.10436766

[16] NISHA L K, KUMAR R. A smart data analytics system generating for 5G 
N/W system via ML based algorithms for the better communications [C]//
Proc. 1st International Conference on Innovative Sustainable Technolo‑
gies for Energy, Mechatronics, and Smart Systems (ISTEMS). IEEE, 
2024: 1–6. DOI: 10.1109/ISTEMS60181.2024.10560068

[17] SEVGICAN S, TURAN M, GÖKARSLAN K, et al. Intelligent network 
data analytics function in 5G cellular networks using machine learning 
[J]. Journal of communications and networks, 2020, 22(3): 269 – 280. 
DOI: 10.1109/JCN.2020.000019

[18] MANIAS D M, CHOUMAN A, SHAMI A. An NWDAF approach to 5G 
core network signaling traffic: analysis and characterization [C]//Proc. 
IEEE Global Communications Conference. IEEE, 2022: 6001 – 6006. 
DOI: 10.1109/GLOBECOM48099.2022.10000989

[19] ZHANG C J, SHAN G Y, ROH B H. Fair federated learning for multi-
task 6G NWDAF network anomaly detection [EB/OL]. (2024-09-25)
[2024-10-09]. https://ieeexplore.ieee.org/document/10693935

[20] SANTOS G L, ENDO P T, SADOK D, et al. When 5G meets deep learn‑
ing: a systematic review [J]. Algorithms, 2020, 13(9): 208. DOI: 10.3390/

Table 1. Prediction accuracy of the three models
Model
RNN
LSTM

XGBoost

Accuracy/%
94.74
94.87
86.84

LSTM: Long Short-Term Memory 
RNN: Recurrent Neural Network 

XGBoost: Extreme Gradient Boosting

51



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

HE Shiwen, PENG Shilin, DONG Haolei, WANG Liangpeng, AN Zhenyu 

Special Topic   Exploration of NWDAF Development Architecture for 6G AI-Native Networks

a13090208
[21] TEZERGIL B, ONUR E. Wireless backhaul in 5G and beyond: issues, 

challenges and opportunities [J]. IEEE communications surveys and tuto‑
rials, 2022, 24(4): 2579–2632. DOI: 10.1109/COMST.2022.3203578

[22] LY A, YAO Y D. A review of deep learning in 5G research: channel cod‑
ing, massive MIMO, multiple access, resource allocation, and network 
security [J]. IEEE open journal of the communications society, 2021, 2: 
396–408. DOI: 10.1109/OJCOMS.2021.3058353

Biographies
HE Shiwen (shiwen.he.hn@csu.edu.cn) is a professor at the School of Comput‑
er Science and Engineering, Central South University, China. His research in‑
terests include basic theoretical research and standard protocol development 
in wireless cellular/satellite/WLAN communication and networking, distribut‑
ed learning and optimization computing, data mining and intelligent analysis, 
as well as research and development of low-level implementation theory and 
application technology for open programmable AI-native communication proto‑
type systems.

PENG Shilin received his BS degree in IoT engineering from the School of In‑
ternet of Things Engineering, Hohai University, China in 2023. He is currently 
pursuing his MS degree in computer technology at Central South University, 
China. His research interest is AI-Native wireless communication.

DONG Haolei received his MS degree in computer science from the School of 
Computer Science, Wuhan University, China in 2019. He is currently pursuing 
his PhD degree in computer science at Central South University, China. His re‑
search interests include AI-Native wireless communication, 6G core networks, 
and knowledge graphs.

WANG Liangpeng is a senior engineer at Purple Mountain Laboratories 
(PML), China, specializing in wireless communication and network technolo‑
gies. His research focuses on big data analytics and AI algorithms for networks, 
as well as knowledge graph-driven algorithms for autonomous network opera‑
tions and intelligence.

AN Zhenyu is currently a senior engineer at Purple Mountain Laboratories 
(PML), China. His research interests include optimization theory and ultra-reli‑
able and low latency communications.

52



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

TANG Chenyue, LI Zeshen, CHEN Zihan, Howard H. YANG 

Device Activity Detection and Channel Estimation Using Score-Based Generative Models in Massive MIMO   Special Topic

Device Activity Detection and Device Activity Detection and 
Channel Estimation Using ScoreChannel Estimation Using Score--Based Based 
Generative Models in Massive MIMOGenerative Models in Massive MIMO

TANG Chenyue1, LI Zeshen1, CHEN Zihan2, 

Howard H. YANG1

(1. ZJU-UIUC Institute, Zhejiang University, Haining 314400, China；
 2. Singapore University of Technology and Design, Singapore 487372, 
Singapore)

DOI: 10.12142/ZTECOM.202501007

https://kns.cnki.net/kcms/detail/34.1294.TN.20250312.1558.002.html, 
published online March 13, 2025

Manuscript received: 2025-01-02

Abstract: The growing demand for wireless connectivity has made massive multiple-input multiple-output (MIMO) a cornerstone of modern 
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tection and channel estimation. In this paper, we present an approach utilizing score-based generative models to address the under-
determined nature of channel estimation, which is data-driven and well-suited for the complex and dynamic environment of massive MIMO 
systems. Our experimental results, based on a comprehensive dataset generated through Monte-Carlo sampling, demonstrate the high preci‑
sion of our channel estimation approach, with errors reduced to as low as −45 dB, and exceptional accuracy in detecting active devices.
Keywords: activity detection; channel estimation; inverse problem; score-based generative model; massive MIMO

Citation (Format 1): TANG C Y, LI Z S, CHEN Z H, et al. Device activity detection and channel estimation using score-based generative mod‑
els in massive MIMO [J]. ZTE Communications, 2025, 23(1): 53–62. DOI: 10.12142/ZTECOM.202501007
Citation (Format 2): C. Y. Tang, Z. S. Li, Z. H. Chen, et al., “Device activity detection and channel estimation using score-based generative 
models in massive MIMO,” ZTE Communications, vol. 23, no. 1, pp. 53–62, Mar. 2025. doi: 10.12142/ZTECOM.202501007.

1 Introduction

1.1 Motivation

The advent of the Internet of Things (IoT) era is marked 
by a significant increase in the number of connected 
devices, each capable of sensing and communicating, 
which has brought about a new set of challenges in 

network connectivity[1–2]. The IoT, with its expected massive 
device connectivity, is poised to revolutionize various aspects 
of daily life and socio-economic activities, from smart homes 
and cities to healthcare applications. These applications re‑
quire ubiquitous connectivity, making massive machine-type 
communications (mMTC) a critical component of the upcom‑
ing 6G networks[3]. MMTC aims to provide wireless connectiv‑
ity to a vast number of devices with low-complexity and low-
power, which is essential for realizing IoT-based applications 
but also poses significant challenges in terms of network man‑
agement and efficiency[4–6].

One of the key enablers for mMTC is the massive multiple-

input multiple-output (MIMO) technology[7], which is expected 
to significantly improve spectral and energy efficiency at the 
base station (BS) level. However, a major challenge lies in ac‑
quiring accurate channel state information (CSI) for mMTC, as 
the pilot-aided training overhead for uplink channel estima‑
tion scales with the number of devices, which can be ex‑
tremely large in a massive connection scenario[8]. A typical 
characteristic of mMTC traffic is its sporadic pattern, with 
most devices designed to remain in sleep mode for energy con‑
servation and only a limited number active for data transmis‑
sion at any given time interval[9]. This sporadic nature entails 
the design of joint device activity detection and channel esti‑
mation to reduce the training overhead for channel estimation.

Traditional methods for channel estimation often use dimen‑
sion reduction techniques (e.g., the discrete Fourier transform) 
to reduce the pilot sequence length and computational com‑
plexity, which may lead to performance degradation due to the 
off-grid effect and energy leakage[10]. These methods also fail 
to capitalize on the common sparsity across different fre‑
quency bands. To address these limitations, a novel sparse 
Bayesian learning (SBL) framework for joint device activity de‑
tection and channel estimation has been proposed, exploiting 
additional sparsity structures to significantly enhance sparse TANG Chenyue and LI Zeshen are co-first authors.
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recovery performance[11].
Inspired by the potential of score-based generative models 

in specialized applications such as magnetic resonance imag‑
ing (MRI) reconstruction[12–13], we introduce a training and in‑
ference algorithm for wireless channel estimation using score-
based generative models in massive MIMO communication 
scenarios. This approach models the log-distribution of chan‑
nels by learning the high-dimensional gradient, known as the 
score, providing a distribution learning framework for model‑
ing high-dimensional millimeter-wave (mmWave) MIMO chan‑
nels in a stochastic environment. Unlike traditional methods, 
our approach uses score-based generative models to learn the 
score of the distribution in an unsupervised manner, indepen‑
dent of pilot symbols. Device activity detection and probabilis‑
tic channel estimation are achieved by sampling from the pos‑
terior distribution using annealed Langevin dynamics, tack‑
ling challenges in out-of-distribution settings, wide signal-to-
noise ratio (SNR) ranges, and interference scenarios.
1.2 Related Work

Many problems in engineering applications, ranging from 
signal processing and computer vision to machine learning 
and statistics, can be formulated as linear inverse problems[14]. 
To solve these linear inverse problems, researchers have pro‑
posed various approaches, such as compressed sensing meth‑
ods[15] and deep learning techniques[16]. Pre-trained generative 
priors have also been used in solving linear inverse problems, 
surpassing classical compressed sensing approaches[17–18]. 
With the emergence of deep generative models in density esti‑
mation[19–21], there has been a surge of interest in developing 
linear inverse algorithms with data-driven priors[22–23]. Owing 
to the powerful representational capabilities of deep genera‑
tive models, they can effectively learn accurate prior knowl‑
edge given sufficient data samples[14]. Their potential in solv‑
ing linear inverse problems is gaining increasing attention.

Massive connectivity is a key requirement for future wire‑
less cellular networks to support mMTC[5]. In large-scale wire‑
less cellular networks, user detection and channel estimation 
can be viewed as high-dimensional linear inverse problems, as 
scheduling a large number of occasionally active users on a 
separate control channel may incur significant overhead. Stud‑
ies such as Refs. [24] and [25] investigate a random access 
protocol in which each active user picks one of the orthogonal 
signature sequences at random and sends it to the BS, and a 
connection is established if the selected preamble is not used 
by the other users. Refs. [5] and [26] propose the use of the ap‑
proximate message passing (AMP) [27] algorithm for joint user 
activity detection and channel estimation, and further show 
that a state evolution analysis[28] of the AMP algorithm allows 
an analytic characterization of the missed detection and false 
alarm probabilities for device detection.

As a novel class of generative models, diffusion models 
(DM), also known as score-based generative models, have 

achieved remarkable performance in density estimation and 
image generation[20, 29]. Originally, DM was introduced for un‑
conditional image generation; however, they have since been 
widely applied to conditional probability distributions, en‑
abling tasks such as conditional image generation[30]. Super‑
vised end-to-end training of deep learning-based methods has 
been successfully applied to wireless MIMO channel estima‑
tion[31–32], introducing a powerful and robust deep learning al‑
gorithm in the form of the learned denoising approximate mes‑
sage passing (L-DAMP) algorithm[33]. Furthermore, Ref. [34] 
employs annealed Langevin dynamics and score-based models 
to efficiently train generative models on simulated datasets, 
achieving performance superior to that of generative adver‑
sarial networks (GANs).
1.3 Contributions

The principal contributions of this paper are summarized as 
follows:

• We introduce an approach that leverages score-based gen‑
erative models to achieve joint active device detection and 
channel estimation for massive MIMO communications. Our 
solution delivers accurate estimates without imposing any as‑
sumptions on the dimensionality or sparsity of the channels, 
thereby providing a flexible and robust method for real-world 
applications.

• We generate simulated data with varying sizes and com‑
plexity, closely capturing the diverse and dynamic nature of 
massive MIMO environments. This capability allows our 
model to be trained and tested under conditions that accu‑
rately reflect real-world wireless propagation scenarios.

• Through extensive numerical simulations, we validate the 
effectiveness of our method. The results indicate that the accu‑
racy of active device detection exceeds 98% under high SNR 
conditions. Additionally, the normalized mean square error 
(NMSE) can be reduced to as low as −45 dB, highlighting the 
superior performance of our approach in channel state estima‑
tion and active user detection in massive MIMO systems.
1.4 Organization

The remainder of this paper is organized as follows. Section 
2 presents the massive MIMO system model, the inverse prob‑
lem, and the procedures involved in score-based generative 
models. Section 3 details the training phase of the proposed 
method, focusing on the generation of channel data and the 
training of the score function, as well as the inference (testing) 
stage. Section 4 provides numerical simulation results and dis‑
cussions. Sections 5 and 6 conclude the paper and present 
the future work.
2 Preliminaries

2.1 Massive MIMO
Massive MIMO is a key technology for next-generation wire‑

less communication systems, characterized by the deployment 
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of a large number of antennas at the BS to serve multiple users 
simultaneously[35]. This configuration allows for significant im‑
provements in spectral efficiency, energy efficiency, and over‑
all system performance. By leveraging spatial multiplexing 
and beamforming techniques, massive MIMO can effectively 
mitigate interference, increase data rates, and improve the reli‑
ability of wireless links. The large number of antennas enables 
the BS to exploit the spatial diversity of the channel, leading 
to more precise CSI estimation and better resource allocation. 
As a result, massive MIMO serves as a key enabler for next-
generation wireless networks, including 5G and beyond, ad‑
dressing the growing demand for high-speed, low-latency, and 
high-capacity communication services[36].
2.2 Inverse Problem

Inverse problems are ubiquitous in various scientific and 
engineering fields, where the goal is to infer the parameters or 
states of a system from observed data. A common linear model 
used to describe inverse problems is expressed as:
Y = XP + Z (1),

where  Y represents the observed data, X is the unknown sys‑
tem matrix or operator, P is the known parameter vector, and 
Z is the noise term. The objective is to estimate X from Y and 
P, but reconstructing the underlying causes from their ob‑
served effects is inherently complex, particularly in real-world 
scenarios. This challenge is further compounded by the pres‑
ence of noise and the potential for the problem to be ill-posed, 
meaning that solutions may not exist, may not be unique, or 
may be excessively sensitive to noise. To address these issues, 
regularization techniques such as Tikhonov or total variation 
regularization are commonly applied. These methods add con‑
straints to the problem to stabilize the solution[37].

In situations where the number of unknowns surpasses the 
number of measurements, referred to as under-determined 
problems, the challenge intensifies. The disparity between 
the number of unknowns and the available data leads to a 
scenario with an infinite number of potential solutions to X 
that could align with the equation Y = XP + Z. This scenario 
is particularly problematic as it sig‑
nificantly increases the risk of inac‑
curate or unstable solutions[13]. To 
combat these difficulties, optimiza‑
tion methods and Bayesian ap‑
proaches are employed. These strat‑
egies incorporate prior knowledge 
and provide a framework for manag‑
ing the uncertainty associated with 
the estimates. Furthermore, recent 
progress in machine learning and 
generative modeling has introduced 
innovative approaches to address 
these challenges. These advance‑

ments offer new methods to handle the instability and uncer‑
tainty inherent in under-determined problems, thereby im‑
proving the reliability and accuracy of the solutions derived 
from noisy and incomplete data.

Specifically, score-based generative models have shown 
promise in addressing under-determined inverse problems by 
leveraging the underlying data distribution to generate plau‑
sible solutions. These models represent a powerful approach 
capable of capturing the complex structures of high-
dimensional data distributions without explicit parametric 
forms, making them especially suitable for applications where 
data distribution is complex or not easily characterized by tra‑
ditional models[17]. Such applications are particularly relevant 
for real-world wireless environments.
2.3 Score-Based Generative Model

A core hypothesis of this study is that the characteristics of 
wireless channels can be represented as samples drawn from a 
common probability distribution, which has been widely ad‑
opted in both theoretical and practical wireless communica‑
tions research[38]. Score-based generative models, which have 
demonstrated their effectiveness on natural image benchmark 
datasets, are a class of generative models that generate data by 
estimating the gradient of the data distribution[13]. This ap‑
proach diverges from traditional generative modeling tech‑
niques, which often rely on explicit parameterization of the 
data distribution. Instead, score-based generative models learn 
the gradient field of the data distribution in a non-parametric 
fashion, providing a flexible framework for capturing complex 
data distributions[20]. Fig. 1 fully displays the process of han‑
dling inverse problems using a score-based generative model.
2.3.1 Learning Score Function

The score function for a point X is represented as:
ψX (X ) = ∇ log pX (X ) (2),

where X denotes the data point, pX (X ) is the probability den‑
sity distribution of this data point, and ψX (X ) is a matrix of 
size M × N. The score function encapsulates the local density 

Figure 1. A step-by-step process for estimating X by employing a score-based model in conjunction with 
the known matrices Y and P
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information of the data distribution, which is instrumental in 
the generative process. In practice, ψX (X ) can be used to 
guide the optimization process for channel estimation by itera‑
tively updating the channel estimate in the direction that maxi‑
mizes the likelihood of the observed data. For example, if the 
score function indicates a high likelihood of a certain channel 
coefficient being non-zero, the algorithm can focus on refining 
the estimate of that coefficient, leading to more accurate chan‑
nel estimation overall. The goal is to learn a model sθ capable 
of generating sθ (X ) to approximate ψX (X ).
2.3.2 Denoising Score Matching

While ψX and the explicit score matching 
EX~pX

é
ë sθ (X ) - ψX (X ) 2

2
ù
û are often intractable, denoising 

score matching is proposed to address this issue. Ref. [39] 
demonstrates that the loss function L ( sθ ) we used for training 
is equivalent to the loss function of the explicit score match‑
ing, as long as log pX͂|X ( X͂|X ) is differentiable with respect to 
X͂. This approach transforms the task of learning the score 
function of the original data distribution (which is nearly im‑
possible in the real world) into learning the score of the per‑
turbed distribution by using L ( sθ ). By synthesizing corrupted 
data samples X͂ and learning the score of the conditional distri‑
bution pX͂ | X, the following objective is used:

L ( sθ ) = EX~pX,X͂~p
X͂

é
ë
êêêê


sθ ( X͂ ) - ∇ log pX͂ | X ( X͂ | X ) 2

2
ù
û
úúúú (3).

Since IoT allows the use of arbitrary noise distributions for 
training and learning the score at arbitrarily perturbed inputs, 
we set the perturbation U as i. i. d. Gaussian, with zero mean 
and covariance matrix σ2

UI, i.e.,
∇ log pX͂|X ( X͂|X ) = -U/σ2

U (4).
A learnable model proposed by Ref. [20] is used to learn sθ. The model (in our work, such a deep neural network described 

in Section 3) uses a weighted version of L ( sθ ) at multiple 
noise levels to train a single score-based model for an indi‑
vidual datum within a batch, represented by:

Lscore (θ ) = E j,X~pX, U j~pU j

é
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ê

ê
êê
ê

ê
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||
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|
sθ (X + U j ) + U j

σ2
U j

|

|

|
|
||
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|
2

2

ù

û

ú

ú
úú
ú

ú (5).

Weighing the predicted score at each noise level is to for‑
mulate denoising score matching as a variance-exploding (VE) 
diffusion process[40].
2.3.3 Posterior Sampling Using Score Functions

Once the score function is learned, it can be used to per‑
form posterior sampling, which is a key step in the channel es‑

timation process. Posterior sampling involves drawing samples 
from the posterior distribution of the CSI conditioned on the 
received pilot symbols. Given the known matrices Y and P, 
the posterior distribution of matrix X can be expressed using 
the Bayes’rule:

pX|Y (X|Y ) = pY|X (Y|X ) ⋅ pX (X )
pY (Y ) (6).

Expanding the logarithm of the posterior distribution, we get
log pX|Y (X|Y ) = log pY|X (Y|X ) + log pX (X ) - log pY (Y ) (7).
Taking the gradient with respect to X, we obtain
∇ log pX|Y (X|Y ) = ∇ log pY|X (Y|X ) + ∇ log pX (X ) (8),

since ∇ log pY (Y ) = 0. For all Y, the gradient of the posterior 
distribution simplifies to:
ψX|Y (X|Y ) = ψY|X (Y|X ) + ψX (X ) (9).
This result shows that the gradient of the posterior distribu‑

tion is a combination of the gradient of the likelihood function 
and the gradient of the prior distribution. The likelihood func‑
tion is derived from Y, while the prior distribution is learned 
using the score-based generative model.
2.3.4 Annealed Langevin Dynamics for Posterior Sampling

To sample from the posterior distribution, we use annealed 
Langevin dynamics, which is an iterative process that updates 
the channel estimate Xest in a manner that maximizes the pos‑
terior probability. We introduce time-varying hyperparameters 
αt and βt as an enhancement, based on the method proposed 
in Ref. [41]. The update rule for annealed Langevin dynamics 
is given by
Xest, i + 1 = Xest, i + αi ⋅ (∇ log pY|X (Y|Xest, i ) +
∇ log pX (Xest, i )) + 2β ⋅ αi ⋅ σU i

⋅ ζ (10),
where αi is the step size that decays over time; β is a hyperpa‑
rameter that controls the amount of noise added to the update; 
σU i

 is the noise level at the i-th step; ζ~CN (0, I ) is Gaussian 
noise added to maintain diversity in the samples. The param‑
eters αi, β, and σU i

 are critical for the performance of the pro‑
posed method. The learning rate αi is chosen through a grid 
search to balance convergence speed and accuracy. The initial 
value of the regularization parameter β is empirically set to 0.9 
for robustness to noise. The noise variance σU i

 is estimated 
from the training data using a maximum likelihood approach.

The gradient of the likelihood function ∇ log pY|X (Y|Xest, i ) can be derived from P. For Gaussian noise, this gradient is 
given by

56



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

TANG Chenyue, LI Zeshen, CHEN Zihan, Howard H. YANG 

Device Activity Detection and Channel Estimation Using Score-Based Generative Models in Massive MIMO   Special Topic

∇ log pY|X (Y|Xest,i ) = (Xest,iP - Y )PH

σ2pilot
(11).

The term ∇ log pX (Xest, i ) represents the gradient of the prior 
distribution, which is learned using the score-based genera‑
tive model. This gradient is approximated by the learned score 
function sθ (Xest, i ).
3 System Model

Consider a single-cell massive MIMO network, where a BS 
equipped with M antennas serves N potential users, denoted 
by the set N = {1,⋯, N }. Each user device is equipped with a 
single antenna. This setup is typical for an uplink massive ac‑
cess scenario, where the BS efficiently manages data transfer 
and communication from numerous users within its coverage 
area. Fig. 2 illustrates an example.

In our system model for device activity detection and chan‑
nel estimation, the sporadic nature of user traffic can be char‑
acterized by a user activity indicator for each user. We denote 
this indicator by

λn = ì
í
î

1, if user n is active
0, otherwise (12).

The probability of a user being active is ϵ, and the probabil‑
ity of being inactive is 1 - ϵ, such that Pr [ λn = 1] = ϵ and 
Pr [ λn = 0 ] = 1 - ϵ. The set of active users within a coher‑
ence block is defined as K = { n:λn = 1}, and the number of 
active users is K = |K|.

The transmitted signal for each user n is given by
xn = λn hn (13),

where hn represents the channel coefficient for user n. The ma‑
trix X is formed by stacking the transmitted signals of all us‑
ers, i.e., X = [ x1,⋯, xN ]T.

During the training phase, the BS receives a matrix Y, 
which is modeled as the product of the transmitted signal ma‑
trix X, the pilot matrix P, and the addition of additive white 
Gaussian noise Z. The model can be expressed as

Y = XP + Z (14).
Here, the channel state information matrix X ∈ CM × N, 

which is a complex matrix of size M times N, where M repre‑
sents the number of receive antennas and N denotes the total 
number of users. Z is the Gaussian noise matrix with elements 
distributed as CN [ 0, σ2 I ]. P is the pilot matrix where each 
entry is a randomly chosen (fixed for all test samples) quadra‑
ture phase shift keying (QPSK) symbol with unit amplitude 
and low-resolution phase. Pilot symbols Lpilot are selected from 
a pre-designed codebook, with each symbol pi belonging to 
CN. These pilot symbols are utilized to facilitate the estimation 
process. The transmitted pilot matrix P is constructed from 
these symbols, and it is common practice in communication 
standards to pre-specify these pilot sequences.

The pilot density is defined by α = Lpilot /N. When α < 1, it 
implies that the number of received pilots is less than the total 
number of possible pilot transmissions, i.e., MLpilot < MN. This 
situation leads to an under-determined inverse problem for 
channel estimation, where there are more unknowns (channel 
coefficients) than the number of equations provided by the re‑
ceived pilots.

Following the methodology outlined in Ref. [34], we employ 
a score-based generative model to accomplish two critical 
tasks: channel estimation and device activity detection. The 
pseudocode is shown in Algorithm 1. This model operates on a 
data-driven approach, which is particularly effective in ad‑
dressing under-determined scenarios. In under-determined 
problems, the number of unknowns exceeds the number of 
equations, making the system’s solution unstable and sensi‑
tive to noise. However, our approach can stabilize these solu‑
tions by learning the underlying data distribution, thus provid‑
ing a robust framework for estimation.
Algorithm 1: Device activity detection and channel estimation 
via score-based generative models in massive MIMO systems
Input: Pilot matrix P, received pilots Y, pretrained score-
based model sθ, received noise power σ2pilot, inference noise 
levels σ2

U i
, hyperparameters L, Q, α0, β, and r < 1.

Generate random initial estimate: Xest,0~CN (0, I )
For i = 1, 2, ⋯, L
  Set annealed noise level σ ← σU i

.
  For q = 1, 2, ⋯, Q
    Generate annealing noise ζ~CN (0, I ).

    Xest, q ← Xest, q - 1 + α0 ⋅ ri ⋅ (XestP - Y )PH

σ2pilot + σ2 +
α0 ⋅ ri ⋅ sθ (Xest ) + 2β ⋅ α0 ⋅ ri ⋅ σ ⋅ ζ

    Count the number of zero rows in Xest to find N - K.
Output: Estimate channel matrix Xest, and then get the NMSE 
and activity detection accuracy.

The objective of our model is to estimate the CSI using the Figure 2. System model of a massive device communication network

The cellular network
The BS with M an‑tennas

K active users
N−K inactive users

BS: base station
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received pilot matrix Y and the known pilot matrix P, and to 
determine the number of inactive users indicated by λn = 0 in 
the channel matrix X. The process is divided into two main 
phases: training and inference.

1）Training phase: This initial step involves training the 
score-based generative model by minimizing the loss function 
as detailed in Section 2.3.2. To compute the score function sθ, we train a deep neural network, as depicted in Fig. 3. The neu‑
ral network is trained to learn the score function that approxi‑
mates the gradient of the log-likelihood of the data distribu‑
tion. Moreover, it is fully convolutional, enabling it to process 
matrices of varying sizes, which is crucial for the dynamic na‑
ture of massive MIMO systems. This is a one-time setup pro‑
cess for the wireless device, typically conducted offline using 
a high-performance computing server and a dataset compris‑
ing either precise channel measurements or simulated channel 
data. The loss function quantifies the discrepancy between the 
model’s predictions and the actual data, guiding the model to 
learn the data distribution effectively.

Particularly, our approach employs a Monte-Carlo simulation 
to generate synthetic massive MIMO channel data. User posi‑
tioning is modeled to simulate random distribution within a de‑
fined area, reflecting real-world spatial randomness. Path loss is 
calculated using  Path Loss/dB =  128.1 +  37.6 log10d [42], 
which is a standard model for signal attenuation in wireless 
communication. Firstly, it allows for the modeling of complex 
channel behaviors by simulating a large number of random vari‑
ables, which is essential for accurately representing the mul‑
tipath fading effects in wireless communication channels[43]. 
Secondly, this approach facilitates the assessment of system 
performance under various conditions, providing a robust frame‑

work for optimizing and understanding the behavior of massive 
MIMO systems[36]. Then, the neural network begins with 2D 
downsampling and convolutional layers designed to extract 
meaningful features from these input datasets. To enhance the 
model’s ability to learn complex patterns, Rectified Linear Unit 
(ReLU) activation functions are adopted to introduce non-
linearity. The model then employs 2D upsampling with addi‑
tional convolutional layers to reconstruct the data to its original 
dimensions. In the closing act of the methodology, a 2D average 
pooling layer serves to compress feature maps, enhance noise 
resilience, and streamline subsequent layers by reducing di‑
mensionality and focusing on dominant features.

2) Inference (testing) phase: In this phase, channel estima‑
tion is treated as an optimization problem and solved using the 
iterative algorithm presented in Sections 2.3.3 and 2.3.4. The 
pre-trained model, combined with the received pilots, is uti‑
lized to recover the CSI. This phase is designed to operate in‑
dependently of the training stage, enabling adaptability to vari‑
ous real-world conditions, including interference and quantiza‑
tion effects on the received pilots.

The complexity of each step is analyzed as follows.
1) Initialization: The initialization step involves generating 

a random initial estimate Xest,0~CN (0, I ), which has a com‑
plexity of O ( MN ), where M and N are the dimensions of the 
channel matrix.

2) Outer loop i = 1, 2, ⋯, L: Setting annealed noise level 
σ ← σUi

 involves negligible computational complexity.
3) Inner loop q = 1, 2, ⋯, Q: Generating annealing noise 

ζ~CN (0, I ) has a complexity of O ( MN ). The update step for 
Xest, q involves several matrix operations:

• Xest, q ← Xest, q - 1 + α0 ⋅ ri ⋅
(XestP - Y )PH

σ2pilot + σ2 : This step involves 
matrix multiplication and division, 
with a complexity of O ( MNP ), 
where P is the number of pilots.

• +α0 ⋅ ri ⋅ sθ (Xest ): The com‑
plexity of this step depends on the 
model sθ, assumed to be 
O ( f ( MN ) ), where f is a function of 
the model complexity.

• + 2β ⋅ α0 ⋅ ri ⋅ σ ⋅ ζ: This 
step has negligible complexity.

4) Counting zero rows: Counting 
the number of zero rows in Xest to 
find N - K has a complexity of 
O ( MN ).

Thus, the total time complexity is 
dominated by the inner loop opera‑
tions, particularly the matrix multi‑
plications and the model sθ evalua‑
tion. Therefore, the total complexity Figure 3. An elaborate schematic representation of model sθ utilizing the RefineNet architecture. This 
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is approximately O ( LQ ⋅ MNP + LQ ⋅ f ( MN ) ). The space 
complexity is primarily determined by the storage require‑
ments for Xest and other intermediate variables, which is 
O ( MN ).
4 Experiments

We conduct simulations with different configurations of M 
(the number of antennas), N (the total number of users), and K 
(the number of active users) to generate input channel matri‑
ces that vary in size and complexity via Monte-Carlo methodol‑
ogy. This approach allows us to assess the efficacy of our 
model under diverse conditions, verifying its robustness and 
capability to accurately mirror the dynamics of realistic sce‑
narios. Additionally, we perform a comparative analysis of our 
proposed score-based generative model against the traditional 
linear minimum mean square error (LMMSE) method for chan‑
nel estimation. This comparison is conducted across various 
SNR levels to evaluate their performance in terms of NMSE 
and activity detection accuracy. All experiments are con‑
ducted using PyTorch on an NVIDIA RTX 3090 GPU.

The channel matrix is initialized by assigning random posi‑
tions to users and computing the path loss as a function of 
their distance from the BS. Subsequently, it constructs the 
channel coefficients using complex Gaussian random vari‑
ables to simulate the multipath fading effects and compiles 
these into a data matrix for each simulation iteration. After 
generating datasets, we assess the performance of Algorithm 1 
through simulations, spanning various SNR levels. Our evalua‑
tion criteria include the accuracy of channel estimation, the er‑
ror rates throughout a simulated communication system that 
employs coding, and the computational overhead associated 
with both training and inference phases. To mimic real-world 
deployment scenarios, we examine situations where the algo‑
rithm is challenged with data distributions that differ from 
those encountered during training. This assessment is con‑
ducted without any foreknowledge of the test environment’s 
characteristics, without modifying 
the model to adapt to the new distri‑
bution, and without conducting any 
additional training specifically for 
the test conditions.

For fine-tuning the hyperparam‑
eters in our channel estimation 
methods, we utilize a subset of 500 
channel realizations sampled from 
the training distribution. In the test‑
ing phase, we create a fresh dataset 
consisting of 50 channel realizations 
for each target distribution, ensur‑
ing that the random seed used dif‑
fers from those used in the training 
and validation phases. For the pilot 
signals P, we construct matrices 

with dimensions N × Lpilot, filled with QPSK elements that are 
randomly selected to represent unit-power, two-bit phase-
quantized random beamforming vectors. To standardize the 
channel measurements, we apply normalization using the 
mean channel power calculated from the training dataset, 
which is derived from all training samples and their respective 
entries. The average SNR is then determined using the for‑
mula N/σ2pilot, where N is the number of transmit antennas and 
σ2pilot is the variance of the pilot signals.

Our proposed model demonstrates rapid convergence, as in‑
dicated by the swift reduction in training loss during the ini‑
tial steps (Fig. 4), stabilizing at a low value by the completion 
of training.

In our comparative analysis of channel estimation tech‑
niques, the proposed score-based generative model outper‑
forms the LMMSE method (Fig. 5). The traditional LMMSE 
method[44] exhibits higher noise levels and is notably less accu‑
rate in estimating user activity rates, especially in poor chan‑
nel conditions. Only under sufficiently good channel condi‑
tions can the traditional method approach the performance of 
our generative learning approach.

Figure 4. Training loss of the score-based generative model over steps

Figure 5. Performance comparison of channel estimation methods

LMMSE: linear minimum mean square error         NMSE: normalized mean square error         SNR: signal-to-noise ratio
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We also input different datasets to evaluate the algorithm’s 
performance. Three sets of comparative experiments were con‑
ducted to observe the impact of varing M, N, and K on the al‑
gorithm’s effectiveness (Fig. 6). The overall experimental re‑
sults indicate the following:

1) Performance improvement: Our proposed method demon‑
strates a substantial enhancement in performance compared to 
traditional methods. This is particularly evident when evaluat‑
ing the impact of varying M, N, and K on the algorithm’s effec‑
tiveness. Our method consistently shows lower NMSE and 
higher accuracy across different configurations, indicating a 
superior capability in channel estimation and device activity 
detection.

2) Robustness: The proposed score-based generative model 
demonstrates robustness under varying channel conditions, 
maintaining low estimation errors despite changes in channel 
conditions.

The numerical comparative analysis is as follows:
1) When only M (number of receiving antennas) varies, the 

maximum absolute difference in NMSE across all SNR levels 
is only 1.15 dB (when SNR=10 dB), indicating a minimal im‑
pact on channel estimation. However, due to the increase in 
matrix size, the sensitivity to data increases, and the accuracy 
of active detection is poor under very poor channel conditions. 
The smaller the M, the faster the accuracy approaches 100% 
(e.g., M=8, 16). Nevertheless, a perfect accuracy rate of 100% 
can be achieved when SNR=45 dB.

2) When only N (total number of devices) varies, the NMSE 
curve indicates a slight overall improvement in model perfor‑
mance. This suggests that our model is particularly suitable 
for massive MIMO scenarios. Meanwhile, the overall active de‑
tection accuracy tends towards 100% more rapidly as the SNR 
increases.

3) Changes in K (number of active users) do not affect the 
shape of the channel. The active detection accuracy remains 
high even under the worst channel conditions. Moreover, the 
CSI estimation becomes closer to the ground truth as the num‑
ber of active users decreases. This is applicable to IoT sce‑

narios, where devices are typically de‑
signed to remain inactive most of the 
time to conserve energy, with only a 
few devices active transmitting data at 
any given interval. This indicates that 
using our model to assess device activ‑
ity rates and perform more accurate 
channel estimation could optimize de‑
vice activity patterns in the future, fur‑
ther reducing energy consumption and 
improving energy efficiency.
5 Conclusions

In this paper, we propose a novel 
method for joint device activity detec‑
tion and channel estimation in massive 
MIMO networks, enabling accurate 
channel estimation to enhance energy 
efficiency and communication perfor‑
mance.

We employ score-based generative 
models, an innovative generative ap‑
proach that integrates deep neural net‑
works without making any assumptions 
about the received pilot matrix, the 
transmitted pilot matrix, and the pilot 
density. During our simulation experi‑
ments, we generated a comprehensive 
dataset using Monte-Carlo sampling. 
Since the deep neural network frame‑
work used to learn the scoring function 
is fully convolutional, the model can 
flexibly adapt to inputs of various 
sizes. We conducted a series of com‑

0
−10
−20
−30
−40

NM
SE/

dB

(e) NMSE vs SNR for K varies, M=16, N=256
SNR/dB

0  10 20 30 40
(f) Activity detection accuracy vs SNR for K varies, 

M=16, N=256

K=10
K=20
K=30
K=40

K=10
K=20
K=30
K=40

SNR/dB
0  10 20 30 40

Acc
ura

cy/
%

100
95
90
85
80
75
70
65
60

Figure 6. Diagrams for simulaion results
NMSE: normalized mean square error      SNR: signal-to-noise ratio

(c) NMSE vs SNR for N varies, M=16, K=20

N=128
N=256
N=384
N=512

SNR/dB
0 10 20 30 40

NM
SE/

dB

0
−10
−20
−30
−40

(d) Activity detection accuracy vs SNR for N varies, 
M=16, K=20

100
95
90
85
80
75
70
65
60

Acc
ura

cy/
%

N=128
N=256N=384N=512

SNR/dB
0 10 20 30 40

(a) NMSE vs SNR for M varies, N=256, K=20
SNR/dB

0 10 20 30 40

NM
SE/

dB

0
−10
−20
−30
−40

M=8
M=16
M=24
M=32

Acc
ura

cy/
%

(b) Activity detection accuracy vs SNR for M varies, 
N=256, K=20

100
95
90
85
80
75
70
65
60

SNR/dB
0 10 20 30 40

M=8
M=16
M=24
M=32

60



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

TANG Chenyue, LI Zeshen, CHEN Zihan, Howard H. YANG 

Device Activity Detection and Channel Estimation Using Score-Based Generative Models in Massive MIMO   Special Topic

parative experiments under varying conditions, including vary‑
ing numbers of antennas, total users, and active users. The re‑
sults demonstrate that as channel conditions improve, channel 
estimation is highly precise, with errors reduced to as low as 
− 45 dB, and the detection of active devices is exceptionally 
accurate. As the number of users increases, the NMSE de‑
creases, indicating that our approach is highly suitable for 
massive MIMO scenarios. Moreover, a smaller number of ac‑
tive users indicates a sparser channel matrix, yet changes in 
activity have a minimal impact on our model’s performance, 
confirming that our method is entirely data-driven.
6 Future Work

The proposed score-based generative model for joint device 
activity detection and channel estimation demonstrates signifi‑
cant potential for application in next-generation wireless sys‑
tems. Future work will explore the adaptation of this method to 
mmWave channels, which have unique characteristics, such 
as higher frequency bands and more severe path loss. Addi‑
tionally, we plan to investigate the integration of this approach 
into 5G and 6G deployments, where massive connectivity and 
high spectral efficiency are critical requirements.
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Abstract: In a 5G mobile communication system, cell search is the initial step in establishing downlink synchronization between user equip‑
ment (UE) and base stations (BS). Primary synchronization signal (PSS) detection is a crucial part of this process, and enhancing PSS detec‑
tion speed can reduce communication latency and improve overall quality. This paper proposes a fast PSS detection algorithm based on the 
correlation characteristics of PSS time-domain superposition signals. Conducting PSS signal correlation within a smaller range can reduce 
computational complexity and accelerates communication speed. Additionally, frequency offset can impact the accuracy of calculations dur‑
ing the PSS detection process. To address this issue, we propose applying convolutional neural networks (CNN) for frequency offset estimation 
of synchronization signals. By compensating for the frequency of related signals, the accuracy of PSS detection is improved. Finally, the analy‑
sis and simulation results demonstrate the effectiveness of the proposed approach.
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1 Introduction

T
he communication between user equipment (UE) and 
the base station (BS) is established via wireless sig‑
nals, where cell search serves as the initial step for ter‑
minal devices to access the 5G network. After power 

on, users need to perform a cell search to quickly identify 
their current cell, obtain the cell ID, and achieve time-
frequency synchronization. The detection of the primary syn‑
chronization signal (PSS) in 5G is an important process in 
wireless communication, involving the identification and de‑
coding of the PSS from received signals. PSS is one of the sig‑
nals that help the UE synchronize with base stations, enabling 
devices to determine the start of wireless frames and decode 
additional signals. It also plays a key role in identifying 5G 
cells; when combined with the secondary synchronization sig‑
nal (SSS), it can uniquely identify a cell. Through effective al‑
gorithms and techniques, efficient PSS detection can be 
achieved under various channel conditions, ensuring reliable 
synchronization and network access capabilities for the UE.

Several research findings regarding PSS detection algo‑
rithms have been proposed. Starting from the basic principles 
of the 5G initial access process, JEON et al. [1] proposed the 
cell search process and the PSS structure of the 5G communi‑
cation system. CHAKRAPANI[2] proposed the composition of 
the synchronization signal block (SSB) carrying PSSes. 
BALASUBRAMANYA et al. [3] proposed a design scheme for 

4G PSS in the evolution of 5G technology. A new method for 
rapid detection of PSS by UE was introduced in Ref. [4], 
which improved fast synchronization between terminals and 
networks. YOU[5] proposed a sequential integer carrier fre‑
quency offset (ICFO) and edge master synchronization signal 
(S-PSS) detection scheme to reduce complexity in the 5G new 
wireless vehicular Internet of Things system. There are also 
various solutions to the frequency offset problem in PSS detec‑
tion[6]. In Ref. [7], the authors described a program for synchro‑
nizing 5G networks and proposed two methods to estimate fre‑
quency offset (FFO). The first method utilizes the carried infor‑
mation, and the second method involves partial cross-
correlation of PSS, which is applied to each orthogonal fre‑
quency division multiplexing (OFDM) symbol in the SSB, with 
the phase of the auto-correlation peak used to estimate the 
value of FFO. However, synchronization errors can reduce the 
performance of maximum likelihood (ML) methods[8]. Some re‑
searchers have adopted joint detection and estimation meth‑
ods for initial downlink access, as described in Refs. [9] and 
[10]. The second technique for estimating FFO is based on 
replicating the correlation signal between the partial input 
PSS and the PSS over more than half of the symbol length du‑
ration[11]. It is also noted that synchronization errors can dimin‑
ish the performance of the FFO estimation method. In the past 
two years, significant advancement has been made in 5G PSS 
detection and the application of convolutional neural networks 
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(CNN) in physical layer algorithms. ASSAF et al.[12] evaluated 
5G New Radio (NR) frequency synchronization in the down‑
link initial access, and proposed and investigated a reduced-
complexity FFO estimation method. In Ref. [13], a novel ap‑
proach to enhancing the detection of PSS sequences in 5G NR 
systems was proposed. ZHANG et al.[14] proposed a scheme to 
estimate the energy per resource element (EPRE) ratio of PSS 
to SSS/demodulation reference signal (DMRS) and demon‑
strated the proposed scheme can estimate the EPRE ratio ac‑
curately when the signal-to-noise ratio (SNR) is above −4 dB 
through simulation results. COUTINHO et al. [15] proposed a 
CNN-based algorithm for channel estimation in the presence 
of phase noise and carrier frequency offset (CFO) in 5G and 
beyond systems. ZHENG et al. [16] proposed a decomposed 
CNN for the sub-Nyquist tensor-based 2D direction of arrival 
(DoA) estimation.

The main motivation and novelties of this paper are summa‑
rized as follows.

• This paper proposes a fast PSS detection algorithm as‑
sisted by a CNN neural network, which can quickly complete 
the PSS detection process after the 5G terminal device is 
turned on, thereby reducing communication latency.

• In the fast PSS detection algorithm, the sum sequence, ob‑
tained by superimposing three frequency domain PSS se‑
quences, is cross-correlated with the received signal in the 
time domain. A shorter time-domain sequence is determined 
based on the correlation peak and then transformed into the 
frequency domain to cross-correlate with the received signal. 
The cell ID required for PSS detection is determined from the 
correlation peak.

• Local received signals typically have a frequency offset. 
Using CNN-assisted frequency offset correction algorithms 
can yield corrected received signals, thereby enhancing the ac‑
curacy of PSS detection results.
2 Background Description

2.1 5G Cell Search Procedure
The 5G NR cell search process is a key step for UE to find 

and access suitable serving cells in the network when it is 
turned on or needs to reconnect. The specific steps of the 5G 
NR cell search are as follows:

Step 1: The NR terminal adjusts the radio frequency (RF) re‑
ceiver to the designated receiving frequency to capture the signal;

Step 2: The PSS synchronization detection is performed to 
obtain time slot timing information and retrieve the sector 
number N (2)

ID  within the cell group;
Step 3: Frequency offset compensation is applied;
Step 4: Based on the relationship between PSS and SSS in 

the synchronization signal and the physical broadcast channel 
(PBCH) block, the NR terminal performs frequency domain 
correlation detection on the SSS to obtain the cell group num‑
ber N (1)

ID ;

Step 5: The NR terminal obtains the cell ID using the pre‑
viously obtained cell group ID N (2)ID  and cell group ID N (1)ID . 
Then, retrieve the corresponding DMRS information from the 
PBCH based on the cell ID to obtain the SSB index, which 
corresponds to the beam ID[17];

Step 6: The PBCH symbol is decoded to obtain the master 
information block (MIB) information;

Step 7: The cell search process is completed, enabling the 
UE to perform a random signal access process for uplink syn‑
chronization.
2.2 PSS Detection

From the cell search process described above, it is evident 
that the PSS synchronization detection process is the initial 
step for mobile terminals to access the network. This step en‑
ables terminal devices to perform tasks such as sector identifi‑
cation N (2)ID  recognition, frequency synchronization, neighbor 
cell search, and fast locking. Specifically, after several steps, 
such as coarse time synchronization, frequency offset estima‑
tion, fine synchronization, SSS detection, and beam ID detec‑
tion, users can receive and interpret the physical broadcast in‑
formation of the cell, obtain MIB and system information 
block (SIB), and complete cell access through random access 
and other processes based on the system messages received. 
In these steps, coarse time synchronization involves position‑
ing the timing synchronization within the cyclic prefix range, 
which is accomplished using PSS signals. 5G PSS has strong 
autocorrelation and cross-correlation properties, which are lev‑
eraged for coarse time synchronization. Since there are only 
three sets of PSS sequences and the generation of SSS signals 
is linked to both cell group identification and sector identifica‑
tion, performing PSS detection first reduces synchronization 
complexity and facilitates the retrieval of necessary physical 
cell information. By utilizing the correlation characteristics of 
the PSS to demodulate the PSS in the received signal, the 
starting position of OFDM symbols and the sector ID, N (2)ID , car‑
ried by PSS can be determined. Based on the fixed time-
frequency position of SSB, once the time-frequency position of 
PSS is established, the time-frequency position of SSS can be 
determined. The frequency domain position of the SSS 
matches that of the PSS, while in the time domain, the SSS is 
shifted by two OFDM symbols from the position of the PSS. 
Using the generation rules or cross-correlation characteristics 
of SSS, the SSS sequence can be demodulated to determine 
the cell group ID, N (1)ID , carried by SSS. The cell identification 
number can be calculated from the relationship between the 
cell group ID and the sector ID, completing the downlink syn‑
chronization process and allowing the terminal to access the 
base station’s network. From the above process, it is clear 
that quickly determining the frequency domain position of 
PSS can improve the speed of cell search, enabling terminals 
to access the network more rapidly.

The traditional PSS detection algorithm generates a local 
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PSS time-domain sequence and performs 
cross-correlation calculations with the re‑
ceived signal. The PSS sequence has good cor‑
relation characteristics, and sliding cross-
correlation can fully leverage these properties.

First, three sets of local PSS time-domain 
signals are generated, followed by point-by-
point sliding cross-correlation with the re‑
ceived signal. Significant peaks occur only 
when the local PSS sequence matches the 
PSS sequence in the received signal. The 
maximum correlation value is identified, 
and the position of this maximum value 
serves as the synchronization point for the 
PSS. Simultaneously, the PSS sequence 
that detects the peak corresponds to the sec‑
tor ID number it carries.

The sliding cross-correlation detection pro‑
cess is shown in Fig. 1.

The frequency band occupied by 5G com‑
munications is relatively broad, encompassing a total of 29 fre‑
quency bands. They are primarily divided into two spectrum 
ranges: 26 frequency bands below 6 GHz (collectively referred 
to as sub-6 GHz) and 3 millimeter wave frequency bands. Cur‑
rently, sub-6 GHz is primarily used in China, and it includes 
7 frequency bands: n1, n3, n28, n41, n77, n78, and n79. 5G 
supports a maximum bandwidth configuration of 400 MHz. In 
the standalone (SA) mode, the SSB frequency domain location 
where the PSS is located must be determined by the global 
synchronization channel number (GSCN). Due to the extensive 
bandwidth of 5G NR, the concepts of GSCN and the Global 
Synchronization Grid have been introduced. The SSB fre‑
quency domain is positioned at integer intervals of the Global 
Synchronization Grid and terminals search for synchronization 
signals at these intervals. For frequencies below 3 GHz, the 
frequency scanning interval is 1.2 MHz; for frequencies be‑
tween 3 GHz and 24.25 GHz, the interval is 1.44 MHz; for fre‑
quencies between 24.25 GHz and 100 GHz, the scanning in‑
terval is 17.28 MHz. The frequency range, SSB position, and 
GSCN determination are outlined in Table 1.

In the non-standalone (NSA) mode, the SSB frequency do‑
main position is also uncertain, and the terminal is notified of 
the SSB frequency point position through high-level signaling. 
This introduces uncertainty in the SSB position across the en‑
tire bandwidth. The PSS sequence is a part of the SSB, as 
shown in Fig. 2, and the frequency-domain position of the PSS 
sequence is similarly uncertain across the entire bandwidth.

PSS sequences at different frequency domain positions may 
generate distinct time-domain sequences through the inverse 
fast Fourier transform (IFFT), leading to a rapid increase in 
computational complexity, which is unsuitable for 5G NR sys‑
tems. Additionally, the large volume of received data further 
exacerbates computational complexity. This combination re‑

sults in higher computational complexity, causing significant 
computation delays, longer communication delays, and re‑
duced network communication quality. To address these chal‑
lenges, this paper proposes a CNN-assisted PSS detection 
method to quickly determine the frequency domain position of 

Table 1. Global synchronization grid
Frequency 
Range/MHz
0–3 000

3 000–24 250

SSB
N*1 200 kHz+M*50 kHz,

N=1:2 499, M∈(1,3,5)
3 000 MHz+N*1.44 MHz,

N=0:14 756

GSCN

3N+(M−3)/2

7 499+N

GSCN Range

2–7 498

7 498–22 255
GSCN: global synchronization channel numberSSB: synchronization signal block

Figure 1. Traditional PSS detection algorithm

PSS: primary synchronization signal

Figure 2. Structure of synchronization signal block

PBCH: physical broadcast channelPSS: primary synchronization signal RB: resource blockSSS: secondary synchronization signal
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the PSS, thereby shortening synchronization time and acceler‑
ating the cell search process. The existing PSS signal synchro‑
nization detection algorithm performs correlation operations 
on PSS sequences at various frequency points within the work‑
ing frequency band in the time domain. Due to the lengthy 
PSS sequence (and consequently, the received signal), corre‑
lating the three PSS sequences with the received signal leads 
to high algorithm complexity and considerable computational 
demands, resulting in prolonged communication delays. More‑
over, unlike 4G technology, the SSB in 5G NR is no longer 
fixed in the middle of the frequency band. The flexible place‑
ment of SSB time-frequency positions increases the initial 
blind detection computation of PSS, impacting the speed at 
which users can decode base station broadcast information 
and ultimately diminishing network communication quality.
2.3 System Model

During propagation, the transmitted signal is first corrupted 
by multi-path fading and additive white Gaussian noise 
(AWGN). CFO is introduced owing to the oscillator mismatch 
between BS and UE. The received signal is then modeled as[19]:

r (n) = s (n) e
j 2πεn

N + ω (n) (1),
where s (n) is the transmitted signal, ω (n) is the zero mean 
AWGN with unity variance, and ε denotes the relative CFO 
normalized by the sub-carrier frequency spacing.
3 CNN-Assisted Fast PSS Detection Algorithm

Given the high complexity of traditional PSS detection algo‑
rithms and their limited resistance to frequency offset and 
noise[20], there is a pressing need for a new algorithm that of‑
fers fast processing speed, anti-frequency offset capabilities, 
and effective correlation utilization. To address this, this pa‑
per proposes an algorithm based on the CNN method to pro‑
cess the received signal sequence in the presence of fre‑
quency offset. It further leverages the cross-correlation fea‑
tures of frequency-domain superimposed signals to optimize 
PSS detection. This approach not only enhances the resistance 
to frequency offset but also significantly improves the PSS de‑
tection speed, thereby reducing communication latency. The 
processing flow of the proposed PSS detection optimization al‑
gorithm consists of the following steps.

1) Step 1: Generate a polynomial based on the PSS se‑
quence. The specific implementation method is as follows. 
There are 1 008 physical layer cells in NR, and the formula 
for calculating NR cell IDs is:

N cellID = 3N (1)ID + N (2)ID (2),
where N (1)ID ∈ {0,1,…,335}, carried by SSS, and N (2)ID ∈ {0,1,2}, 
carried by the PSS. The primary synchronization signal is de‑
fined in 3GPP protocol TS38.211 and utilizes three m-

sequences of length 127 to represent the three values of N (2)ID .
To construct the PSS sequence, zeros are inserted at 

both ends of the dPSS,i(k) sequence (where i = 0,1,2 and k=
56, 57,…,182) for a local sequence length of 127. This pro‑
cess extends the sequence to a total length of 256, result‑
ing in PSS i (k ), which is expressed as:

PSS i(k) = ì
í
î

0, k = 0,1,2,⋯,55,183,⋯,255
dPSS,i( )k , k = 56,57,⋯,182                  (3),

where i=0, 1, and 2. The generation formula maps 
PSS i(k) ,i ∈ {0,1,2} to the corresponding N (2)ID .

2) Step 2: Overlay three frequency-domain PSS sequences. 
In the second step, the three frequency-domain PSS se‑
quences are overlaid to create a sum sequence PSSsum. An 
IFFT is then applied to convert the frequency-domain se‑
quence into a time-domain sequence pss_tsum(k) , k =
0,1,2,⋯,255. The specific implementation method is as fol‑
lows. Denote the three frequency-domain PSS sequences as 
PSS i(k) , where i = 0,1,2. We compute the element-wise sum 
of the three sequences to obtain the sum sequence PSSsum(k) 
and represent it as:

PSSsum(k) = ∑i = 0
2 PSS i(k) , k = 0,1,2,⋯, 255 (4).

The sequence shown above is transformed from a frequency 
domain sequence to a time domain sequence pss_tsum(k) 
through the IFFT process, which can be expressed as:

pss_tsum(k) = IFFT (PSSsum(k) ) , k = 0,1,2,⋯, 255 (5).
3) Step 3: Estimate signal reception and frequency offset us‑

ing CNN. In the third step, the terminal receives the time-
domain signal r͂ (k) transmitted by the base station. A CNN 
model is then employed to correct the received signal and esti‑
mate the carrier frequency offset, yielding r (k ). The CNN-
based carrier frequency offset estimation consists of two 
stages: offline training and online estimation. Firstly, the of‑
fline training process involves generating a network training 
dataset through MATLAB simulation based on the statistical 
characteristics of the signal used for frequency offset estima‑
tion. The dataset is processed from complex to real numbers 
and then used for offline training of the model. Finally, the 
trained network model parameters are saved. When estimated 
online, the received OFDM system signal r͂ (k) is converted 
into real numbers and transmitted to the trained CNN model. 
The estimation result r (k ) can be directly output based on the 
trained network parameters.

4) Step 4: Determine the peak value and time offset using 
correlation operation. A correlation operation is performed be‑
tween the sequence and the time-domain received signal r (k ) 
to determine the peak value and corresponding time offset 
value k0. The specific implementation process is as follows.
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• Cross-correlation operation
We cross-correlate the time-domain sequence 

pss_tsum(k) , k = 0,1,2,⋯,255 with the local received signal 
r (k ), where k=0, 1, 2,⋯, 255. The cross-correlation function 
C (k) is defined as:

C (k) = |∑n = 0
N - 1pss_t*sum (n ) r (k + n) |2 (6).

Here, pss_t*sum (n ) is the complex conjugate of pss_tsum (n ), 
and N is the length of the sequence.

• Synchronization position determination 
The position k0 corresponding to the maximum value of the 

correlation peak is calculated as :
k0 = arg max

k
 {C (k) , k = 0,1,2,⋯} (7).

• Visualization of cross-correlation results
Fig. 3 illustrates the cross-correlation results among the 

time-domain received signals, the three local time-domain 
PSS sequences, and their superimposed and constructed se‑
quences. The time-domain signals are obtained by applying an 
IFFT to the frequency-domain representations of the PSS se‑
quences and their superposition. These time-domain signals 
are then cross-correlated with the received signal to calculate 
their correlation peak values.

• Analysis of correlation peak results
From Fig. 3, it is evident that the correlation peak values of 

the superimposed sequence PSSsum (k ) in the time domain 
align with the trend of the correlation peak values of the indi‑
vidual PSS sequences, e.g., pss_t3 (k ). While the peak magni‑
tude of PSSsum (k ) is slightly lower than that of a specific PSS 
sequence, and the difference is negligible. This demonstrates 
the feasibility of using the superimposed PSS to determine cor‑

relation peak values and derive the corresponding time off‑
set k0.• Example of cell ID correlation

Fig. 3 shows the three time-domain sequences pss_ti (k ), i =
1,2,3, where i=1, 2, and 3 correspond to cell IDs 1, 2, and 3, 
respectively. The correlation results confirm that the superim‑
posed sequence can reliably achieve time-domain synchroni‑
zation for these cell IDs.

5) Step 5: Extract and transform the time-domain signal to 
frequency domain. In this step, a portion of the time-domain 
received signal is extracted from the corresponding time offset 
position k0 to obtain a shorter time-domain signal sequence. 
The signal is then transformed into the frequency domain us‑
ing FFT to obtain the frequency-domain signal segment 
R0(k ). The specific implementation method is as follows.

• Signal extraction
Starting from the corresponding time offset position k0, we 

intercept a segment of the time-domain signal r (k ). The ex‑
tracted signal segment is denoted as r0 (k), and its length cor‑
responds to the OFDM symbol length L that depends on the 
number of sampling points, represented as intercept(k).

• Frequency-domain transformation and output
The extracted frequency domain representation of the re‑

ceived signal is obtained as R0 (k) , k = 1,2,⋯,L. The signal 
r0 (k) is transformed by FFT into the frequency domain signal 
R0, denoted as R0 (k) ,  where R0 (k) = FFT ( r0 (k) ) , k =
1,2,⋯,L.

6) Step 6: Perform correlation to determine the PSS se‑
quence ID. Here, the received signal is correlated with the 
three possible PSS sequences PSS i, i = 1,2,3, to determine the 
ID of the PSS sequence. The specific implementation method 
is as follows. The frequency domain signal R0 (k) is then cor‑
related with three local frequency domain sequences 
PSS i(k) , i = 0,1,2. The maximum peak of the correlation 
value for each possibility of i is taken, and these three correla‑
tion values are compared to obtain the maximum value. Based 
on the corresponding frequency domain signal PSS i(k) , i =
0,1,2, the corresponding small cell group number N 2ID can be 
obtained, and the corresponding PSS sequence ID can be fur‑
ther determined. The mathematical expression for the above 
process is:

corr i = ∑
n

R0 (n + k) + PSS i (n ) (8),

PSS id = max
i

 (abs(corr i ) ) (9).

4 Simulation and Analysis
To evaluate the performance of the proposed PSS search al‑

gorithm, a 5G cell search link was constructed using 
MATLAB 2021a. The channel environment was modeled us‑
ing the tapped delay line-A (TDL-A) model channel. The Figure 3. Correlation peaks of superimposed signals
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simulation parameters for cell search are shown in Table 2. 
This section simulates the main synchronization process of the 
5G NR system using MATLAB.

The simulation steps are as follows. First, according to 
3GPP TS38.211[18], a downlink signal containing SSB is gener‑
ated for a cell with a cell identifier of 2 (N 2ID = 2), using param‑
eters in Table 2. Next, the generated signal is passed through 
a channel model to simulate the received signal. The 5G NR 
channel model used in the simulation is a TDL. Finally, differ‑
ent PSS detection algorithms are applied using the received 
5G signals for performance evaluation.

Fig. 4 shows the peak values obtained using the proposed 
algorithm under the aforementioned simulation conditions. 
The three subgraphs are calculated using the three local sets 
{N 2ID, ID ∈ (0,1,2)} of PSS. The proposed algorithm success‑
fully identifies the correct N 2ID and PSS synchronization points.

Fig. 5 shows the comparison of PSS detection results be‑
tween the improved algorithm and the existing algorithm with 
different frequency offset parameters. The accuracy of PSS de‑
tection by the improved algorithm is higher than that of the ex‑
isting algorithm. Especially, when the frequency offset is 
large, the PSS detection accuracy of the improved algorithm is 
significantly improved compared with existing algorithms. The 
proposed superimposed cross-correlation method can mitigate 
the frequency offset accumulation of sliding cross-correlation. 
Combined with the CNN method for frequency offset correc‑
tion of the received signal, it offers better detection perfor‑
mance and lower computational complexity than the tradi‑
tional sliding cross-correlation method.

Fig. 6 shows when the SNR is low, the time consumption 
difference between the proposed algorithm and the baseline al‑
gorithm is not significant; on the contrary, when the SNR is 
high, using the proposed algorithm to perform PSS detection 
takes much less time than the baseline algorithm, indicating 
that the proposed algorithm is more suitable for scenarios with 
high SNRs.

Fig. 7 illustrates the accuracy of PSS synchronization under 
various frequency offsets. As the frequency offset increases, 

Table 2. Simulation parameters for cell search
Simulation

Parameter Types
Channel bandwidth/MHz
Subcarrier spacing/kHz

The number of FFT points
Channel mode

Sampling frequency/MHz
Frequency offset/kHz

SSB block type
CP type

Configuration Parameters
100

15, 30
1 024, 4 096

TDL-A, CDL-A
122.88

0.2, 0.8, 2.8
Case C

Standard
CDL-A: clustered delay line-ACP: cyclic prefixFFT: fast Fourier transform

SSB: synchronization signal blockTDL-A: tapped delay line-A

(a)

(b)

(c)
PSS: primary synchronization signal

Figure 4. Correlation peak plot calculated by proposed algorithm 

Figure 5. Probability of primary synchronization signal search algorithm
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(b) Channel mode: CDL-A
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the algorithm performs well and tends to stabilize.
Fig. 8 illustrates the CNN neural network architecture, 

which consists of several key layers designed to optimize PSS 
detection in 5G NR systems. The architecture begins with an 
input layer that processes the received signal data, followed 
by a series of convolutional layers that extract relevant fea‑
tures from the signal. Each convolutional layer is paired with 
activation functions, such as the rectified linear unit (ReLU), 
to introduce non-linearities. These layers are followed by pool‑
ing layers that reduce the dimensionality of the feature maps, 
which decreases computational complexity and improves gen‑
eralization. The final layers include fully connected layers that 
aggregate the features and output a classification decision or 
prediction, such as the PSS sequence’s position or the sector 
ID. This CNN architecture is tailored to enhance detection ac‑
curacy and robustness against frequency offsets and noise, 
making it suitable for high-performance PSS detection in dy‑
namic 5G environments.

In the conventional method, the main complexity comes 
from the correlation operations, while in our proposed method, 
it comes from correlation operations and convolution layers in 
the CNN block. Unlike existing algorithms, our proposed algo‑
rithm exhibits higher complexity, primarily due to the opera‑
tions of the CNN. Suppose the length of a data frame is L. Af‑
ter downsampling, the length of the received signal is K. The 
length of a downsampling time-domain PSS sequence is N. Us‑
ing the traditional sliding correlation method, the sliding win‑
dow length is K−N+1, representing the number of correlations 
required for a set of local PSS signals to complete synchroniza‑
tion detection. Each correlation operation involves N complex 
multiplications and N−1 complex additions. Therefore, sliding 
cross-correlation requires 3N(K−N+1) complex multiplications 
and 3(N−1) (K−N+1) complex additions. The order of magni‑

tude of the calculation is 3O (NK ). The proposed superim‑
posed correlation method requires N(K − N+1) +3N(L − N+1) 
complex multiplications and N(K−N+1)+2N+3N(L−N+1) com‑
plex additions, where L ≪ K. Given P is the number of trans‑
mitting antennas, M is the number of receiving antennas, and 
Nc is the number of subcarriers, with the CNN network com‑
prising two convolutional layers of kernel size 3 (see Fig. 8), 
the additional complexity introduced by the algorithm is  
O (2P × M × 2 × 32 ). The proposed algorithm enhances de‑
tection and estimation performance, especially in the presence 
of a CFO. Considering the computational load of the CNN al‑
gorithm, the order of magnitude of the calculation is O (NK ). 
The total computational complexity is less than that of the tra‑
ditional sliding correlation method.

Integrating AI modules and data processing units into 5G 
base stations enables the implementation of AI-related algo‑
rithms. This architecture can be guided by relevant patents[21].
5 Conclusions

This paper analyzes existing PSS synchronization detection 
algorithms and their characteristics in 5G NR systems, verify‑
ing the relationship between the autocorrelation peaks and fre‑
quency offset of three superimposed PSS signals compared 

Figure 7. Accuracy of synchronization under different frequency offsets

Figure 8. Basic structure of convolutional neural networks

Figure 6. Time consumption difference between proposed algorithm 
and existing algorithm 
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with a single PSS signal through experimental results. The ac‑
curacy of the CNN-assisted frequency offset estimation algo‑
rithm is examined, leading to the proposal of a new fast PSS 
synchronization detection algorithm that offers resistance to 
frequency offset and noise. In the cell search process, a 
method is introduced to determine a shorter synchronization 
signal sequence based on the frequency domain offset consis‑
tency between the autocorrelation peak of the superimposed 
PSS signals and the correlation peak of non-superimposed sig‑
nals. This approach reduces the computational load of PSS 
synchronization detection and enhances the efficiency of the 
NR communication system’s cell search. The simulation re‑
sults demonstrate that the improved algorithm effectively en‑
hances synchronization detection performance under large 
CFO conditions in the TDL-A or CDL-A channel. Future re‑
search will focus on developing PSS detection algorithms suit‑
able for low SNR scenarios. The performance of the CNN 
model in highly dynamic or interference-heavy environments, 
along with the computational burden on terminals and the en‑
ergy consumption of running CNN models on resource-
constrained devices, will be studied in future research.
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1 Introduction

With the growing demand for high-throughput wire‑
less communications, system bandwidths continue 
to expand. However the use of orthogonal fre‑
quency division multiplexing (OFDM) modulation 

results in a high peak-to-average power ratio (PAPR) [1]. The 
nonlinear behavior of power amplifiers (PAs) often leads to 
compression of high-dynamic-range signals, causing signifi‑
cant signal transmission distortion and upgraded error vector 
magnitude (EVM) at the receiver, even in scenarios with a 
high signal-to-noise ratio (SNR) [2]. Therefore, PA behavior 
modeling and corresponding anti-compression techniques, 
such as digital predistortion (DPD), play an important role in 
establishing a robust wireless communication system[3].

The wider bandwidth leads to the existing polynomial ex‑
pansion models less precise for PA behavior modeling and 
digital predistortion techniques. Traditional DPD methods, 

like the generalized memory polynomial (GMP) [4] or dynamic 
deviation reduction (DDR) model[5], rely on polynomial expan‑
sion. However, increasing bandwidth requires higher polyno‑
mial orders, which introduces a high correlation among the 
polynomial 􀆳s high-order terms, thereby making the traditional 
models sensitive to noise[6]. Additionally, conventional models 
require more delay taps and computational resources for high 
bandwidth signal transmission to radio frequence (RF) PA, 
complicating their integration with nonlinear bases[7].

Recent research and data analysis indicate that neural net‑
works (NNs) have excellent performance in data feature extrac‑
tion, data fitting, and model generalization. As a result, the 
use of NN in DPD has received increased attention and appli‑
cation[8]. For example, a feed-forward NN was proposed in Ref. 
[9], achieving improvements in both linearity and stability. 
Similarly, in Refs. [10] and [11], two-stage network models 
were proposed, achieving good performance metrics such as 
adjacent channel power ratio (ACPR) and normalized mean 
square error (NMSE). In Ref. [12], a novel residual NN struc‑
ture connects residual learning and PA nonlinearity, providing This work was supported by ZTE Industry⁃University⁃Institute Coopera⁃

tion Funds under Grant No. HC⁃CN⁃20220722010.
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better performance than conventional models.
Existing methods often achieve better performance by in‑

creasing the number of parameters, which in turn significantly 
raises model complexity. In real-time applications, optimizing 
model complexity is a crucial aspect of the integration of RF-
DPD and NN. To reduce both the training data length and the 
number of basis functions, Ref. [13] proposed a model that 
combines an efficient uncorrelated equation selection mecha‑
nism with orthogonal least squares. Another model proposed 
in Ref. [14] is a spare gated dynamic NN DPD model that lin‑
earizes the PA for varying transmission configurations, 
thereby reducing model complexity.

Several new models have been introduced to address the is‑
sues of performance and complexity that the classic NN model 
could not handle. These new models can effectively linearize 
RF PAs in broadband communications while reducing com‑
plexity. For instance, Ref. [15] introduced a novel augmented 
convolutional NN-based DPD that can linearize concurrent 
multiband PAs. Additionally, Ref. [16] proposed a novel 
block-oriented time-delay NN to alleviate the deterioration of 
linearization performance. Ref. [17] proposed a novel RNN-
based behavioral model that reduces complexity and enhances 
linearization performance by applying the complete phase-
gated Just Another Network (JANET) unit. These new models 
are more suitable for PA-DPD in wide bandwidths and provide 
better nonlinear modeling capabilities to extract PA features 
for DPD.

In this paper, we present a DPD concurrent NN model 
based on an FNN and a convolutional neural network (CNN). 
The basic inputs of this model are obtained through polyno‑
mial expansion of the GMP+DDR model. This concurrent NN 
model overcomes nonlinear distortions such as amplitude 
modulation to amplitude modulation (AM-AM) distortion and 
amplitude modulation to phase modulation (AM-PM) distor‑
tion in RF-PAs. Our experimental data comprises OFDM sig‑
nals with bandwidths of 300 MHz or 400 MHz. Our model 
aims at reducing non-linear compression to improve the ACPR 
of the output signal, with a target of at least −48 dB within a 
100 MHz integral bandwidth. In addition to its function of ba‑
sis function generation, the proposed model seeks to have en‑
gineering feasibility and low complexity.
2 Mathematical Model of DPD

To enhance the efficiency of PAs, existing methods aim to 
compress the power regression range as much as possible. The 
PA 􀆳 s gain does not maintain linearity when the input signal 
amplitude of the amplifier output section approaches the 1 dB 
compression point. Typically, power amplifiers feature nonlin‑
ear effects such as AM-AM, AM-PM, and time memory. Tradi‑
tional narrowband amplifiers can be modeled using polyno‑
mial expressions, with the Volterra series serving as one of the 
most representative mathematical models. Eq. (1) describes a 
P-order and M-length Volterra series.

y͂ (n ) = ∑
p = 0

P ∑
m

M

hp,m ∏
l = 1

p

x͂ (n - ml ) (1),

where m denotes the length of the memory effect and p de‑
notes the maximum order of the basis. Similar to the solution 
of the Wiener filter, the concatenated signal terms in Eq. (1) 
serve as the bases of polynomial expansion, while the corre‑
sponding coefficients hp,m are their respective weights.

While Volterra can effectively describe nonlinear compres‑
sion with memory effects, the concatenated multiplication of 
signals introduces a great deal of computational effort and 
complexity. The memory polynomial (MP) model[17] replaces 
the concatenated multiplication of signals with a modulus-
valued term based on the Volterra series. The MP model can 
be simplified in the time domain:

y͂ (n ) = ∑
p = 0

P ∑
m

M

h2p,m x͂ (n - m )|x͂ (n - m )|2p (2).

In the MP model, the basis function becomes the signal 
multiplied by the signal􀆳s ground modulus term. This modifica‑
tion leads to a significant reduction in the computational effort 
required by the network. However, as the bandwidth increases 
further, the MP model faces the issue of lower accuracy.

The GMP model extends the composition of the bases based 
on the MP model. It can describe the nonlinear compression 
model at larger bandwidths and can be simplified in the time 
domain as:

y͂ (n ) = ∑
p = 0

P ∑
l

L ∑
m

M

h2p,l,m x͂ (n - l ) || x͂ (n - m ) 2p (3).

The GMP model extends the influence of time memory ef‑
fects in the composition of the basis functions, which is rel‑
evant to the scenario of wideband communication.

The DDR model[5] is also built on the MP model. However, 
it differs from the GMP model by placing more emphasis on 
the aliasing effects of wideband signals. It can be represented 
in the time domain as:

y͂ (n ) ≈ ∑
p = 0

P ∑
k

K

a2p,i,m || x (n ) 2p
x (n - k ) +

∑
p = 0

P ∑
l

L

b2p - 2,j,n || x (n ) 2p - 2
x2 (n - l ) x (n - l )                         (4).

The DDR model can be divided into two parts. As shown in 
Eq. (4), the first part is the MP model, while the second part 
describes the nonlinear compression of the signal after alias‑
ing under the memory effect.

In this paper, since the data we use are wideband signals 
and the main requirement for the proposed model is better per‑
formance, we use the GMP+DDR model as the reference math‑
ematical model for this paper. It can be written as:
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y͂ (n ) ≈ ∑
p = 0

P ∑
i = 0

I ∑
k

K

a2p,i,m || x (n - i )
2p

x (n - k ) +

∑
p = 0

P ∑
j = 1

J ∑
l

L

b2p - 2,j,n || x (n - j )
2p - 2

x2 (n - l ) x (n - l )            (5).

Eq. (5) combines the features of the GMP and DDR models. 
Both the memory effect and aliasing of broadband signals are 
covered to ensure that the model can achieve optimal perfor‑
mance. The dataset composition will also refer to the math‑
ematical model shown in Eq. (5).
3 Designing of DPD NN Model

3.1 Basis Function Generation and Recognition
To explain the generation of basis functions, we first clarify 

the input dataset structure. Our basis function formulation, 
based on the GMP+DDR model for wideband applications, 
draws inspiration from the methodologies presented in Refs. 
[4] and [5]. The intermodulation terms in Eq. (5) are highly 
suitable for modeling the wideband PA. Therefore, we estab‑
lish the dataset format based on the fundamental components 
in Eq. (6).
x͂ (n ) = [ Re ( x (n - 12) ) ,⋯, Re ( x (n) ) ,⋯, Re ( x (n + 11) ) , 
Im ( x (n - 12) ) ,⋯, Im ( x (n) ) ,⋯, Re ( x2(n) ) ,⋯, Im ( x2(n) ) ,⋯, 
| x (n) |2,⋯, | x (n) |4,⋯, | x (n) |6,⋯]T,
X = [⋯x͂ (n - 1), x͂ (n ), x͂ (n + 1),⋯]                                            (6).
The dataset consists of multiple vectors, as shown in Eq. 

(6), indicating the input terms and memory depth. The input 
elements include the signal, the square of the signal, and the 
even-square term of the signal 􀆳 s modulus. And they all stem 
from the GMP+DDR model, as detailed in 
Eq. (5). The model has an order of 7 and a 
memory depth of 24, spanning from −12 to 
11. Since the neural network library we 
use (PyTorch) is less compatible with com‑
plex numbers, the proposed model is 
trained using real-valued data. For this 
purpose, the real and imaginary parts of 
the signal are split and used to construct 
the dataset.

To linearize the bases of individual non‑
linear terms, we propose the use of fully 
connected (FC) layers to combine all ele‑
ments. This approach enables the number 
of basis elements to be established by the 
number of neurons within the FC layer. 
The output of each layer is then nonlin‑
early activated to generate a nonlinear ba‑
sis. Additionally, based on the survey re‑

sults, at least three FC layers are sufficient to produce the ma‑
jority of nonlinear combinations. Then the outputs would be ac‑
tivated by the nonlinear function to ensure their nonlinearity.

In this paper, the basis generation network (BGN) based on 
an FNN is illustrated in Fig. 1. The weight matrix within the 
FC layer adjusts the coefficients of the input terms, which are 
optimized through training feedback. As shown in Fig. 1, the 
length of the FC layers decreases in the forward direction of 
the arrays. Therefore, the number of neurons and the output of 
each FC layer are decreased. It is similar to FNN selecting 
bases for each hidden layer. Regarding the activation func‑
tion, Rectified Linear Unit (ReLU) leads to faster loss conver‑
gence compared to other activation functions based on test re‑
sults. This improvement can be attributed to ReLU􀆳s superior 
sparsity. Consequently, each FC layer 􀆳 s output in the basis 
function generation model is activated by ReLU. Bi/q−1 and 
Bi/q−N in Fig. 1 denote the real or imaginary parts of the first 
and N-th substrates generated, respectively. Since the DPD 
model is a real-valued training NN model, the BGN has two 
identical structures as shown in Fig. 1. The notation “i/q” rep‑
resents in-phase or quadrature components, while “ − 1” or 

“−N” serves as a label for the bases. These labels have no real 
physical meaning and are solely used to distinguish the bases 
and correspond to the weights.
3.2 Structure of Concurrent NN Model

Fig. 2 depicts the proposed concurrent neural network 
model, comprising an FNN and a CNN.

The left side of Fig. 2 displays the FNN model utilized to 
generate basis functions, as described in Section 3.1. Since 
the proposed model is trained using real numbers, the FNN-
based function generation model has two sets of three FC lay‑
ers. The basis generation function only relies on the coeffi‑
cients of each hidden layer in the FNN model. On the right 

ReLU: Rectified Linear Unit
Figure 1. Proposed basis generation function
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side of Fig. 2, the weights generation network (WGN) based on 
a CNN is illustrated. It contains three fully connected layers 
and two convolutional layers, as shown in Fig. 2. To ensure 
that the weights generation does not change by the input, the 
input to the WGN is fixed at a constant value (set to 1 in the 
following training). The input to the CNN model is derived 
from the output of the two FC layers positioned above it. 
Therefore, the input of the WGN has no real physical mean‑
ing. WGN aims to help us find a proper weight through a train‑
ing process as the loss decreases. Similar to the bases, we as‑
sume that when the loss converges to a very low level, the 
weights will be optimized to best describe the nonlinear com‑
pression features in the trained data. Subsequently, the out‑
puts of the FNN and CNN are trained through the projection 
layer at the bottom of Fig. 2 to generate the in-phase/quadra‑
ture (I/Q) data. The projection layer is tailored to perform com‑
plex multiplication accurately by incorporating appropriate di‑
mensional changes, aligning the I/Q data, and producing the 
final output. The mean squared error (MSE) of the model􀆳s out‑
put is computed using the validation set (valset) as the model 
loss. This calculated model loss is then utilized as feedback to 
fine-tune the coefficients in all hidden layers of the proposed 
model. Furthermore, the weights generated by the CNN model 
are insensitive to the data fed into the model. Therefore, if the 
model is executed on a hardware platform such as a Field-
Programmable Gate Array (FPGA), only the FNN network 
needs to be deployed. The trained FNN network carries out 
only linear operations and is easily implemented in engineer‑

ing applications.
In essence, the proposed FNN-CNN con‑

current model achieves DPD through time-
domain fitting. The FNN model generates 
the basis functions based on the GMP+
DDR model via model training, while the 
CNN model produces the weights using the 
coefficients from each hidden layer. Both 
models are jointly optimized to minimize 
the loss. The final output is obtained by 
multiplying the basis functions with the 
weights, after which the valset is used to 
compute the loss. A model with such a 
structure, concurrently trained by CNN 
and FNN, is dubbed a concurrent neural 
network model.
4 Training Process and Results

4.1 Dataset Use Cases
Two datasets from different RFs are 

available in the OFDM communication 
system, with bandwidths of 300 MHz and 
400 MHz. Each dataset has 10×16 384 
samples. We use eight of ten feedback sig‑
nals as training sets (trainset), the other 

two of them as test sets (testset), and the corresponding trans‑
mission signal fed into the PA as the validation set.

Fig. 3 illustrates the nonlinear compression of the datasets 
containing both 300 MHz and 400 MHz bandwidths. The PA 
significantly compresses the signal amplitude. As shown in 
Table 1, the compressed signal produces severe out-of-band 
leakage and nonlinear distortion. Table 1 presents the 
frequency-domain performance of the datasets, and the ACPR 
is calculated at integral bandwidths of 100 MHz and 20 MHz. 
The primary goal of this paper is to minimize the ACPR 
(with a target of at least −48 dB) of the output generated by 
the proposed model by employing optimization and training 
techniques.

The proposed model, as outlined in Section 3, aims to elimi‑
nate the out-of-band nonlinear distortion through time-domain 
fitting of the trainset to the valset. Moreover, we evaluate the 
model􀆳s effectiveness through the ACPR at an integrated band‑
width of 100 MHz.
4.2 Training Results

The datasets shown in Section 4.1 are utilized to train the 
proposed model with the MSE serving as the loss function. 
Eight out of ten training sets are selected randomly for the 
training process, and the remaining two datasets are used as 
testsets to evaluate the trained model􀆳s performance.

Fig. 4 depicts the evolution of the model output􀆳s MSE over 
20 000 training epochs. The blue curve represents the 

I/Q: in-phase/quadrature                    ReLU: Rectified Linear Unit
Figure 2. Proposed parallel concurrent neural network for digital predistortion
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300 MHz dataset, whose MSE drops sharply within the first 
5 000 epochs, reaching a plateau thereafter and converging 
below 2×10-5 around 12 500 epochs. The final loss of the 
300 MHz dataset after 20 000 epochs is 1.4×10-5. The orange 

curve, representing the 400 MHz dataset, exhibits a similar 
downward trajectory, albeit with a poorer result than the blue 
curve. Its final loss after 20 000 epochs is 1.97×10-5. Notably, 
the increase in bandwidth from 300 MHz to 400 MHz does not 
interfere with the convergence speed. The final convergence 
value is affected not only by model training but also by the dif‑
ferences in the datasets. Fig. 4 provides evidence that the pro‑
posed model performs well across various bandwidths, thereby 
highlighting its generalizability.

Fig. 5 shows the DPD results of the proposed model and a 
comparison with the existing Generalized Memory Polynomial 
(GMP) algorithm. Specifically, the out-of-band power of the 
proposed model (the blue curve in the figure) is approximately 
40 dB lower than that of the feedback signal (the red curve) in 
Figs. 5a and 5b. In addition, the signal portion of the model 
output closely matches the signal component of the source sig‑
nal (the cyan curve) for both 300 MHz and 400 MHz cases. 
This outcome indicates the remarkable ability of the proposed 
model to suppress out-of-band nonlinear distortion without 
compromising the fitting of the signal portion. When compared 
with the existing algorithms, the proposed model has obvious 
advantages in suppressing out-of-band leakage. There is 
nearly 20 dB optimization compared to the GMP model (the 

Table 1. Frequency domain performance of datasets

Datasets
300 MHz valset

300 MHz datasets

400 MHz valset

400 MHz datasets

ACPR of Left Band/dB
100 MHz Integral Bandwidth

−54.17
Max=−21.45
Min=−21.49

Average=−21.47
−54.90

Max=−21.36
Min=−21.40

Average=−21.38

20 MHz Integral Bandwidth
−46.18

Max=−21.00 
Min=−21.02

Average=−21.00
−43.29

Max=−19.39 
Min=−19.48

Average=−9.45

ACPR of Right Band/dB
100 MHz Integral Bandwidth

−58.04
Max=−21.94
Min=−21.98

Average=−21.96
−53.61

Max=−22.61
Min=−22.88

Average=−22.66

20 MHz Integral Bandwidth
−48.65

Max=−21.01
Min=−21.01

Average=−21.01
−46.86

Max=−20.13
Min=−20.22

Average=−20.19

NMSE

Max=−16.40
Min=−16.41

Average=−16.40

Max=−17.02
Min=−17.05

Average=−17.04
ACPR: adjacent channel power ratio        NMSE: normalized mean square error

(a) 300 MHz dataset

(b) 400 MHz dataset

Figure 3. Demonstration of training and validation sets

PA: power amplifier

Figure 4. Model training loss
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green curve). However, the training results for the 300 MHz 
and 400 MHz datasets in Fig. 5 still exhibit some out-of-band 
non-linear distortion, approximately 20 dB higher than the out-
of-band part of the validation sets.

Table 2 presents the training and testing results of the pro‑
posed model for both the 300 MHz and 400 MHz datasets. 
The ACPR of both the left and right frequency bands can ex‑
ceed − 48 dB for an integral bandwidth of 100 MHz. Addi‑
tionally, the model output 􀆳 s NMSE indicates an improve‑
ment of nearly −30 dB compared to the initial NMSE of the 
trainsets, demonstrating that the model output fits the signal 
portion well. The ACPR of the testsets is also greater than 
− 48 dB; however, it is approximately 1 dB worse than the 
ACPR of the training sets, and the NMSE training results 
show similar results.

In addition to evaluating the ACPR of the 100 MHz integral 
bandwidth, this study also calculates the ACPR of the 20 MHz 
integral bandwidth to identify why the ACPR produces subopti‑
mal outcomes. By comparing Table 2 with Table 1, it is observ‑
able that the performance difference between the model output 
and the trainsets or testsets remains the same for both 100 MHz 
and 20 MHz integral bandwidths. Consequently, the expansion 
of 80 MHz to the periphery does not affect the ACPR results. 
Instead, the primary factors affecting the ACPR assessment are 
concentrated within the 20 MHz band boundary.
5 Conclusions

This paper presents a concurrent NN model of RF PA de‑
signed to accomplish DPD functions. The proposed model 
employs the enhanced DDR (GMP+DDR) model as input, 
which is more suited for modeling the behavior of broadband 
communication systems. The FNN generates the basis func‑
tions, while the CNN generates the weights, with the entire 
model trained to simultaneously generate their respective op‑
timized values. This study employed eight sets of 300 MHz 
and 400 MHz data for 20 000 epochs and tested the model 
with two sets of data. After training and testing, the desired 
goal of achieving a −48 dB ACPR by 100 MHz integral band‑
width was met for both the trainsets and testsets. The spectro‑
gram shows that the proposed model has a great advantage 
over the existing algorithms in wider bandwidth scenarios. 
Moreover, the ACPR was evaluated at 20 MHz integral band‑
width, revealing that the roll-off is the primary limitation of 

Table 2. Frequency domain performance of model output

Datasets

300 MHz trainsets

300 MHz testsets

400 MHz trainsets

400 MHz testsets

ACPR of Left Band/dB
100 MHz Integral Bandwidth

Max=−50.27
Min=−50.77 

Average=−50.48
−49.65, −49.48

Max=−48.93
Min=−49.36 

Average=−49.17
−48.02, −48.17

20 MHz Integral Bandwidth
Max=−42.53 
Min=−43.15 

Average=−42.94
−42.77, −42.57
Max=−40.99 
Min=−41.49 

Average=−41.24
−40.50, −40.64

ACPR of Right Band/dB
100 MHz Integral 

Bandwidth
Max=−51.29
Min=−51.99

Average=−51.70
−50.71, −50.69

Max=−48.66
Min=−49.10

Average=−48.82
−48.13, −48.12

20 MHz Integral 
Bandwidth

Max=−44.25
Min=−45.14

Average=−44.73
−44.35, −44.25

Max=−42.45
Min=−43.40

Average=−43.10
−42.44, −42.54

NMSE

Max=−43.62
Min=−46.12

Average=−46.69
−44.77, −44.79

Max=−43.86
Min=−44.31

Average=−44.15
−42.92, −42.85

ACPR: adjacent channel power ratio        NMSE: normalized mean square error

(a) 300 MHz spectrogram

(b) 400 MHz spectrogram

Figure 5. Digital predistortion results of the proposed model
GMP: Generalized Memory Polynomial
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ACPR. This finding can guide future efforts to optimize the 
proposed model.
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1 Introduction

Frequency selective surfaces (FSS) are a periodic array 
structure composed of metal patch units on the dielec‑
tric substrate or aperture elements on the metal screen. 
FSS arrays are essentially spatial filters that can select 

the working frequency and polarization mode of electromag‑
netic waves, such as transverse electric (TE) and transverse 
magnetic (TM)，according to the relationship between electric 
and magnetic fields and the incident plane[1–3]. The patch 
type FSS shows the band-stop characteristic and the aperture 
type FSS shows the band-pass characteristic. FSS is fre‑
quently employed in radomes, antenna reflectors, electromag‑
netic shielding, etc[4]. For the radome loaded on the filter an‑
tenna, the wave transmission characteristic is mainly deter‑
mined by the loaded FSS array. FSS is a versatile structure 
that plays a crucial role in controlling and manipulating elec‑
tromagnetic waves for various applications, with their charac‑
teristics determined by the design of the FSS unit, arrange‑
ment period, and dielectric properties of the substrate.

Broadband communication systems have proposed stricter 
bandwidth requirements in recent years[5]. The wide passband 
FSS can achieve low insertion loss electromagnetic wave trans‑
mission under a broad band and large angle incidence. Mul‑

tiple works have studied the design of wide passband FSS. In 
Refs. [6] and [7], a planar broadband FSS composed of three 
layers of patches is introduced. It exhibits a relative band‑
width of 42% under vertical incidence, although its insertion 
loss deteriorates significantly at large angles of incidence. A 
capped dielectric inserted perforated metallic plate bandpass 
frequency selective surface is reported in Ref. [8]. It can 
achieve 40° oblique incident stability with a low profile, but 
its performance is susceptible to fabrication tolerances. In 
Ref. [9], a three-dimensional FSS with sharp roll-off sidebands 
is proposed, which has 62% relative bandwidth and sharp roll-
off sidebands under the incident wave of TE polarization 
modes. The demands of dual polarization applications cannot 
be met by this 3D FSS since it only supports a single polariza‑
tion wave. A dual-band FSS alternative solution with a com‑
plex manufacturing process and a high-dimensional structure 
is provided in Ref. [10] and can satisfy the demands of appli‑
cations involving curved surfaces[11]. Ref. [12] proposes a 
broadband FSS load with charged inductance. Based on multi-
layer cascaded FSS, the characteristics of broadband, low pro‑
file, and miniaturization are achieved by increasing the 
lumped inductance. A passband with a reflection coefficient 
below −10 dB was obtained at 0.1–1.2 GHz, and a stopband 
with a transmission coefficient below −10 dB was obtained at 
5.8–12 GHz. Ref. [13] proposes a relatively simple FSS struc‑
ture for antenna beam control applications, where the FSS This work was supported by ZTE Industry ⁃University ⁃ Institute Coopera⁃

tion Funds under Grant No. IA20220800001.
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structure utilizes a small number of active components to 
achieve reconfigurability, good transmission and reflection 
characteristics required for wireless communication applica‑
tions. In Ref. [14], the FSS bending effect is considered and 
the performance of FSS deteriorates with increasing curvature. 
Few studies have been conducted on broadband oblique-
incidence stable FSS, which cannot satisfy communication sys‑
tems’ demands for broadband stable FSS. The goal of this pa‑
per is to investigate this issue and propose a better framework.

In this paper, a bandpass FSS with a patch-dielectric cas‑
cading structure is proposed. It uses two kinds of circular 
patches with different radii and cross-slotted patches to 
achieve three transmission poles in the passband. Simulation 
results indicate a satisfactory − 0.5 dB bandwidth spanning 
from 1.7 GHz to 2.72 GHz, maintaining angular stability from 
0° to 45° . Compared with the three-layer FSS, the designed 
FSS has a wider passband and better oblique incidence fre‑
quency response. The relative bandwidth of this FSS is 
45.2%, which has low insertion loss and oblique incident sta‑
bility under both TE and TM polarization. In the meantime, 
equivalent circuits are provided to check the accuracy of elec‑
tromagnetic simulations.
2 Design Principle

The design principle of the angular stability FSS is essen‑
tially electromagnetic wave impedance matching under 
oblique incidences. An electromagnetic wave vector is only 
along its propagation direction. Assume that the vectors of in‑
cident, reflected and transmitted waves are k i, kr and k t, re‑
spectively. The incident, reflection and refraction angles are 
θi, θr and θt.The phase matching condition on the interface is k i sin θi =
kr sin θr = k t sin θt, where k i = kr = k1, and k t = k2. From the 
above formula, the Snell’s law can be obtained. There are two 
laws in total, namely, the Snell reflection law and the Snell re‑
fraction law. The reflection law states that the reflection angle 
is equal to the incident angle, that is, θi = θr. The law of re‑
fraction is expressed as the relationship between the refractive 
angle and the incident angle, that is, sin θi sin θt = k2 k1, 
where k1 = ω ε1 μ1  and k2 = ω ε2 μ2 . The Snell’s laws re‑
flect the laws of reflection and refraction of electromagnetic 
waves and have a wide range of applications.

According to the boundary conditions, the polarization char‑
acteristics will not change when waves are reflected and re‑
fracted on the plane boundary, regardless of whether it is a ver‑
tically polarized plane wave or a parallel polarized plane wave. 
When the electromagnetic wave is oblique incidence, the reflec‑
tion and transmission coefficients are related to the polarization 
characteristics of the wave. It is viable to derive the formula for 
the plane wave’s reflection and transmission coefficients with 
two different polarization characteristics.

Γ⊥ = η2 cos θi - η1 cos θt

η2 cos θi + η1 cos θt
(1),

τ⊥ = 2η2 cos θi

η2 cos θi + η1 cos θt
(2),

where η1 and η2 are the characteristic impedance of medium1 
and medium2, respectively. Similarly, for parallel polarized 
plane waves, we obtain that

Γ‖ = η1 cos θi - η2 cos θt

η1 cos θi + η2 cos θt
(3),

τ‖ = 2η2 cos θi

η1 cos θi + η2 cos θt
(4).

It is well known that when the electromagnetic wave is  
oblique incidence on the surface of the medium, partial reflec‑
tion and partial transmission occur. In particular, Eqs. (1) and 
(3) demonstrate that, in the case of vertical polarization, when 
the characteristic impedance of the two media is 
η1 η2 = cos θi cos θt, the reflection coefficient is equal to 0; in 
the case of horizontal polarization, when the characteristic im‑
pedance of the two media satisfies η1 η2 = cos θt cos θi, the 
reflection coefficient is equal to 0, and there is no reflected 
wave. The key to improving the stability of oblique incidence 
is the matching of wave impedance under oblique incidence.

The wave vector of an electromagnetic wave and the normal 
vector at the interface of the incident medium form the inci‑
dent plane. There are two different types of polarized waves in 
the case of oblique incidence: TE polarization (where the elec‑
tric field is parallel to the incident plane) and TM polarization 
(where the magnetic field is parallel to the incident plane). 
The vector transmission line equation can be used to deter‑
mine the characteristic impedance of the transmission line for 
the two polarization modes or the impedance of free space 
waves for the two polarization modes with oblique incidence.

ZTE = μ
ε

1
1 - 1

ω2 εt μn

 (5),

ZTM = μ
ε 1 - k2

t

ω2 εn μt

 (6).

By substituting the relevant formula and the permeability 
and permittivity of free space, the characteristic impedance of 
free space under vertical incidence is 377 Ω, and the above 
formula is simplified to Z TM0 = 377cosθ, Z TE0 = 377 cos θ. The 
wave vector of electromagnetic waves and the normal vector at 
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the interface of the incident medium form the incident plane. 
When the electric field is perpendicular to the incident plane, 
it is a TE wave; when the magnetic field is perpendicular to 
the incident plane, it is a TM wave. Fig. 1 shows that the wave 
impedance of free space under oblique incidence is related to 
the polarization mode of electromagnetic waves, and the wave 
impedance of free space under TE and TM modes has the op‑
posite trend with the incident angle.
3 Configuration and Discussion

3.1 FSS Configuration
The multi-layer FSS performs better than the single-layer 

FSS in terms of bandwidth, oblique incidence transmission co‑
efficients, passband flatness and other factors. In this paper, a 
multi-layer metal-dielectric stack structure is used to design a 
broadband oblique-incidence stable FSS. The top and bottom 
layers feature circular patches, while the middle layer em‑
ploys cross-shaped slots to provide the first resonance point 
and control the coupling between the upper and lower layers 
to generate a second resonance point. The circular patches re‑
duce the effective size variations for oblique incidence. The 

cross-shaped slots can minimize changes in the electric field 
direction. To further increase the number of resonance points, 
an additional layer of dielectric and patch structures is intro‑
duced, resulting in a four-layer dielectric and five-layer patch 
FSS unit.

As shown in Fig. 2, based on the three-layer patch FSS, a 
five-layer metal patch structure is proposed to expand the 
bandwidth and reduce the insertion loss deterioration under 
oblique incidence. The relative permittivity of each dielectric 
substrate in designed FSS is 3, and the loss tangent is 0.001 3 
@ 10 GHz. This five-layer design has been determined to be a 
simple and efficient FSS structure through contrasting various 
patch and analysis structures.

Fig. 2a shows the three-layer FSS, which consists of two lay‑
ers of circular patches with the same radius and a cross slot in 
the middle layer to form a resonant structure. This structure 
typically has two transmission poles available. When the up‑
per patch completely covers the cross slot, the cross slot deter‑
mines the position of the low-frequency transmission pole, the 
thickness of the medium controls the distance between the two 
poles, and the radius of the patch controls the passband fre‑
quency. Fig. 2b shows the proposed FSS structure, adding two 
layers of circular patches with a larger radius to the traditional 
two-layer circular patch structure to increase the transmission 
poles and improve the oblique incidence stability. Fig. 2c 
shows the dimensions of the cross slot in the middle layer.

To achieve better results, we discuss and optimize the 
main parameters of the structure. Fig. 3a shows the simula‑
tion results of the frequency responses with changing length l 
of the cross slot. It is shown that the length of the cross slot 
has more effect on the first and second resonant frequencies, 
and less effect on the third resonant frequency. As l in‑
creases from 23.14 mm to 25.14 mm, the first and second 
transmission poles gradually move away from each other, and 
the relative bandwidth increases from 42.4% to 47.8%. Simi‑
larly, Fig. 3b shows the simulation results of the frequency 
responses for changing the top patch radius R1. Changing R1 has little effect on the first transmission pole, but signifi‑
cantly affects the second and third poles. When R1 increases 
to 15.7 mm, FSS can no longer support a passband.

Figure 2. Geometry of the proposed wideband FSS: (a) 3D view of three-layer FSS; (b) 3D view of the proposed FSS (unit: mm; P = 36, R1 = 14.7, 
R2 = 13.5, h1 = 7, and h2 = 2.81); (c) 3D view of the interlayer cross slot of the proposed FSS (unit: mm; l = 24.14 and w = 7.29); (d) side view

FSS: frequency selective surface

TE: transverse electric       TM: transverse magnetic
Figure 1. Wave impedance of free space under oblique incidence
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Fig. 3c shows the simulation results of the frequency re‑
sponses with different middle patch radii R2. The value of ra‑
dius R2 has less effect on the second transmission pole but 
more effect on the first and third transmission poles. As R2 in‑
creases, the first and third transmission poles move to lower 
frequencies, and the relative bandwidth gradually narrows. In 
addition, the frequency response of FSS is very sensitive to the 
thickness of the dielectric substrate. Different thicknesses will 
affect the position of the resonance frequency, bandwidth, 
oblique incidence performance, etc., so it needs to be consid‑
ered comprehensively in the design.
3.2 Simulation Results and Discussion

Fig. 4 compares the simulation results of the three-layer 
FSS and the proposed five-layer FSS. As previously men‑
tioned, the three-layer FSS has a passband from 1.944 GHz 
to 2.562 GHz, and there are two transmission poles in the 
passband located at 2.064 GHz and 2.418 GHz, respec‑
tively. The relative bandwidth of the conventional FSS is 
27.4%. It makes sense that the generated broadband is 
formed by splicing multiple passbands. The vertical inci‑
dence simulation results of the proposed five-layer FSS are 
also shown in Fig. 4b. The passband is from 1.716 GHz to 
2.716 GHz. There are three transmission poles in the band 
located at 1.816 GHz, 2.152 GHz and 2.64 GHz, respec‑
tively, and the relative bandwidth is 45.1%. The designed 
FSS achieves broadband oblique incidence stable transmis‑
sion of 1.71– 2.69 GHz with a thickness as small as pos‑
sible relative to the center frequency wavelength, a relative 
bandwidth of 44.5%, and a stable angle of 45° , and sup‑
ports TE and TM dual polarization. The simulation results 
for the polarization conversion and insertion loss character‑
istics of the FSS are displayed in Fig. 5. The FSS demon‑
strates good performance with minimal polarization conver‑
sion and insertion loss. The average insertion loss in the 
band is less than 0.5 dB, which is at a relatively advanced 
level in similar works.

To validate the correctness of the designed structure, we 
extract the equivalent circuit models of the FSS for both the 
three-layer and five-layer configurations. The results of the 

Figure 3. Simulation scattering parameter results of FSS unit cell: (a) results with different cross slot lengths l; (b) results with different top patch 
radii R1; (c) results with different middle patch radii R2

(a) (b) (c)

Figure 4. Simulation results of the TE model

(a)　Simulation results of the three-layer FSS

(b)　Simulation results of the proposed five-layer FSS
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electromagnetic simulations of the equivalent circuits are 
then compared with those of the circuit simulation. Our pro‑
posed structure is reliable and valid, and the results indi‑
cate a high level of consistency.

In Fig. 6a, h1 and h2 represent two dielectric layers, while 
ZFSS represents the equivalent circuit of each layer, and they 
are connected through cascades. In Fig. 6b, Lm1 represents 
the equivalent circuit of a circular patch, which is equiva‑
lent to an inductance. Considering the coupling relationship 
with other FSS units, a series capacitor Cc2 is added; Cp2 rep‑
resents the cross gap, equivalent to capacitance; Lp1 and Cp1 consist of a series inductor and a parallel capacitor. In addi‑
tion, it is also necessary to consider the coupling relation‑
ship between each layer and add parallel capacitors Cc1. The 
model of the equivalent circuit has been added to Fig. 6.

Different from the three-layer structure, the interlayer 
coupling effect of the five-layer structure is stronger, so the 
position of the transmission pole is affected by multiple 
structural parameters. A more complex model of the five-
layer FSS is shown in Fig. 6c.

Comparing electromagnetic simulation with equivalent 
circuits in Fig. 7, we find that equivalent circuits can effec‑
tively match the FSS model. Comparing the transmission co‑
efficients of the three-layer FSS and the five-layer FSS, we 
can see that the five-layer FSS has a wider passband.

The frequency response of the FSS unit cell under 
oblique incidence is shown in Fig. 8. In Fig. 1, as the inci‑
dent angle changes, the incident impedance also changes in 
the opposite direction in TE and TM modes. In the TE 
mode, as the incident angle increases, the first resonant fre‑
quency moves to a lower frequency, and the second and 
third resonant frequencies move to higher frequency. It can 
be seen that under the 45° oblique incidence, both modes 
can provide −10 dB bandwidth from 1.71 GHz to 2.7 GHz. 
The − 0.5 dB transmission coefficient bandwidth of FSS is 
from 1.71 GHz to 2.68 GHz, and the highest insertion loss 
in the band is 0.48 dB. Under the 0–45° oblique incidence, 
FSS can support a relative bandwidth of 44.1% and the trans‑Figure 5. Insertion loss and polarization conversion

(a)　Cascading schematic diagram

(b) Polarization conversion

(b)　Three-layer FSS equivalent circuit

(c)　Five-layer FSS equivalent circuit
FSS: frequency selective surface

Figure 6. Equivalent-circuit model of FSS
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mission coefficient is slightly deteriorated around 1.95 GHz, 
but still greater than −1 dB. The resonance existing at 3 GHz 
can be avoided by changing the size of the structure, but doing 
so will lead to a decrease in performance within the passband. 
Therefore, we choose to retain the presence of the resonance 
point at this location.
4 Conclusions

In this paper, a wide passband FSS with angular stability 
and low insertion loss is proposed. The FSS is designed by a 
five-layer metal patch stack structure. The upper and lower 
layers of patches are circular to improve the oblique inci‑
dence stability, and the middle layer uses cross slots to con‑
trol the passband frequency. Simulation results show a wide 
bandwidth from 1.71 GHz to 2.71 GHz while the insertion 
loss is less than 0.5 dB. Compared with the three-layer FSS, 
the designed FSS has a wider passband and better oblique in‑
cidence frequency response, which has broad application 
prospects. Figure 8. Simulated scattering parameter results of the FSS unit cell 

under oblique incident angles

(a) Simulation results of the three-layer FSS

(b) Simulation results of the five-layer FSS
FSS: frequency selective surface

Figure 7. Comparison results of equivalent circuit simulation with elec⁃
tromagnetic simulation

TE: transverse electric      TM: transverse magnetic

(a) TE polarization reflection coefficient

(b) TM polarization reflection coefficient

(c) TE polarization transmission coefficient

(d) TM polarization transmission coefficient

Frequency/GHz
0.5 1.0 1.5 2.0 2.5 3.0 3.5

Equivalent circuitElectromagnetic simulation

Tra
nsm

issi
on 

coe
ffic

ien
t/dB

10
0

-10
-20
-30
-40
-50
-60
-70
-80
-90

-100
-110

Frequency/GHz
0.5 1.0 1.5 2.0 2.5 3.0 3.5

Equivalent circuitElectromagnetic simulation

Tra
nsm

issi
on 

coe
ffic

ien
t/dB

0

-10

-20

-30

-40

-50
Frequency/GHz

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Ref
lec

ion
 coe

ffic
ien

t/dB

0
-10
-20
-30
-40
-50
-60

θ=0°
θ=15°
θ=30°
θ=45°

Ref
lec

ion
 coe

ffic
ien

t/dB

0
-10
-20
-30
-40
-50
-60
-70

θ=0°
θ=15°
θ=30°
θ=45°

Frequency/GHz
0.5 1.0 1.5 2.0 2.5 3.0 3.5

Tra
nsm

issi
on 

coe
ffic

ien
t/dB

0
-10
-20
-30
-40
-50
-60

Frequency/GHz
0.5 1.0 1.5 2.0 2.5 3.0 3.5

θ=0°
θ=15°
θ=30°
θ=45°

θ=0°
θ=15°
θ=30°
θ=45°

Frequency/GHz
0.5 1.0 1.5 2.0 2.5 3.0 3.5

Tra
nsm

issi
on 

coe
ffic

ien
t/dB

0
-10
-20
-30
-40
-50

83



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

TANG xingyang, SUI Jia, FU Jiahui, YANG Kaiwen, ZHAO Zhipeng 

Research Papers   A Wide Passband Frequency Selective Surface with Angular Stability

References
[1] MITTRA R, CHAN C H, CWIK T. Techniques for analyzing frequency 

selective surfaces: a review [J]. Proceedings of the IEEE, 1988, 76(12): 
1593–1615. DOI: 10.1109/5.16352

[2] MUNK B A. Frequency selective surfaces: theory and design [M]. New 
York, USA: Wiley, 2000. DOI: 10.1002/0471723770

[3] MUNK B A. Finite antenna arrays and FSS [M]. New York, USA: Wiley, 
2003. DOI: 10.1002/0471457531

[4] KURRA L, ABEGAONKAR M P, BASU A, et al. FSS properties of a uni‑
planar EBG and its application in directivity enhancement of a microstrip 
antenna [J]. IEEE antennas and wireless propagation letters, 2016, 15: 
1606–1609. DOI: 10.1109/LAWP.2016.2518299

[5] XU R, LI J Y, WEI K, et al. A broadband slot antenna with unidirectional 
circularly polarized radiation patterns [J]. IEEE antennas and wireless 
propagation letters, 2016, 16: 317 – 320. DOI: 10.1109/
LAWP.2016.2574808

[6] WANG L L, LIU S B, KONG X K, et al. Frequency-selective rasorber with 
a wide high-transmission passband based on multiple coplanar parallel 
resonances [J]. IEEE antennas and wireless propagation letters, 2020, 19
(2): 337–340. DOI: 10.1109/LAWP.2019.2962223

[7] YANG Z Q, JIANG W, HUANG Q L, et al. A 2.5-D miniaturized 
frequency-selective rasorber with a wide high-transmission passband [J]. 
IEEE antennas and wireless propagation letters, 2021, 20(7): 1140–1144. 
DOI: 10.1109/LAWP.2021.3073777

[8] JIN C, LV Q H, WANG J L, et al. Capped dielectric inserted perforated 
metallic plate bandpass frequency selective surface [J]. IEEE transactions 
on antennas and propagation, 2017, 65(12): 7129–7136. DOI: 10.1109/
TAP.2017.2764524

[9] WANG P, JIANG W, HONG T, et al. A 3D wide passband frequency selec‑
tive surface with sharp roll-off sidebands and angular stability [J]. IEEE 
antennas and wireless propagation letters, 2022, 21(2): 252– 256. DOI: 
10.1109/LAWP.2021.3126890

[10] WEI P S, CHIU C N, CHOU C C, et al. Miniaturized dual-band FSS suit‑
able for curved surface application [J]. IEEE antennas and wireless 
propagation letters, 2020, 19(12): 2265 – 2269. DOI: 10.1109/
LAWP.2020.3029820

[11] LI T W, FAN Y D, GU Y J, et al. A novel miniaturized multiband strong 
coupled-FSS structure insensitive to almost all angles and all polariza‑
tions [J]. IEEE transactions on antennas and propagation, 2021, 69(12): 
8470–8478. DOI: 10.1109/TAP.2021.3063351

[12] ZHAO S J, HUANG M, YANG F, et al. A novel wideband FSS radome 
with loaded inductors [C]//International Applied Computational Electro‑
magnetics Society Symposium (ACES-China). IEEE, 2022: 1– 2. DOI: 

10.1109/ACES-China56081.2022.10065188
[13] DANUOR P, JUNG Y B. A simple reconfigurable FSS structure for an‑

tenna beam steering applications [C]//Proceedings of International Con‑
ference on Electronics, Information, and Communication (ICEIC). IEEE, 
2023: 1–3. DOI: 10.1109/ICEIC57457.2023.10049862

[14] LIANG F C, WANG J B, WANG J H, et al. Influence of curvature on the 
transmission characteristics of cylindrical frequency selective surfaces 
[J]. Journal of Changchun University of Science and Technology (natural 
science edition), 2013, 36(Z2): 65–66+106

Biographies
TANG Xingyang received his bachelor’s degree in electromagnetic field and 
wireless technology from Harbin Institute of Technology, China in 2022. He is 
currently pursuing his master’s degree in electronic information at Harbin Insti‑
tute of Technology.

SUI Jia received his BE degree in electronic science and technology from the 
Harbin Institute of Technology, China in 2021, where he is currently pursuing his 
ME degree in electronic science and technology. His current research interests 
are the design of frequency selective surfaces and frequency selective absorber .

FU Jiahui (fjh@hit.edu.cn) received his PhD degree in information and commu‑
nication engineering from Harbin Institute of Technology, China in 2005. His 
current research interests are the design of microwave and millimeter wave cir‑
cuits, antennas, supernormal media, MEMS and EMC. He has published more 
than 50 relevant academic papers in domestic and foreign journals.

YANG Kaiwen received his BS degree in electronic and information engineer‑
ing and PhD degree in electromagnetic fields and microwave technology from 
Xidian University, China in 2016 and 2021, respectively. He is currently an en‑
gineer in ZTE Corporation. His current research interests include filtering an‑
tennas and base station antennas.

ZHAO Zhipeng received his BS and PhD degrees from Xidian University, Chi‑
na in 2015 and 2020, and then joined ZTE Corporation. He is currently a senior 
RF system engineer there. His main research directions include the 5G base 
station, non-terrestrial networks, vehicle radar, etc.

84



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

LIU Zhipeng, LI Kexin, CAI Yuanming, LIU Feng, GUO Jiayin 

Dual-Polarized 2D Beam-Scanning Antenna Based on Reconfigurable Reflective Elements   Research Papers

DualDual--Polarized Polarized 22D BeamD Beam--Scanning Scanning 
Antenna Based on Reconfigurable Antenna Based on Reconfigurable 
Reflective ElementsReflective Elements

LIU Zhipeng1, LI Kexin1, CAI Yuanming1, LIU Feng2, 

GUO Jiayin2

（1. National Key Laboratory of Antennas and Microwave Technology, 
Xidian University, Xi’an 710071, China；
 2. Department of RHP System, ZTE Corporation, Xi’an 710065, China）

DOI: 10.12142/ZTECOM.202501011

https://kns.cnki.net/kcms/detail/34.1294.TN.20250303.1535.002.html, 
published online March 4, 2025

Manuscript received: 2023-09-11

Abstract: In this paper, a dual-polarized antenna operating at 3.5 GHz is presented with 2D beam-scanning performance. The steerable beam 
is realized based on a 2×2 active reflective metasurface. The active metasurface is composed of folded annular rings and cross dipoles embed‑
ded with voltage-controlled varactor diodes. By tuning the capacitance values of the varactors, the reflective phase of the metasurface is recon‑
figured to tilt the main beam. To verify the scanning performance, a prototype is fabricated and measured. At 3.5 GHz, the measured scanning 
ranges are from −25° to 29° and −27° to 29° in the XOZ and YOZ planes, respectively.
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1 Introduction

Beam-scanning antennas have been attracting the inter‑
est of investigators for a long time. They have been 
widely adopted in modern wireless communication sys‑
tems due to their remarkable ability to balance the re‑

quirements of gain and coverage. Compared with omnidirec‑
tional antennas, they can obtain a higher gain in a certain de‑
sired direction and suppress the interference between neigh‑
bor cells. Meanwhile, a steerable beam is capable of satisfying 
the dynamic distributions of users by time and space. There‑
fore, numerous ideas about beam-scanning antennas have 
been proposed.

Among the feasible designs, beam-scanning antennas based 
on metasurface have attracted great interest from investigators 
due to the characteristics of light weight, low cost, and ease of 
fabrication. A mechanical beam-steering antenna using a 
single-layer passive frequency selective surface (FSS) was pre‑
sented in Ref. [1], achieving a scanning range of −30° to 30° 
in the elevation plane via FSS rotation. By applying a Positive-
Intrinsic-Negative Diode (PIN)-loaded active metasurface over 

the square patch antenna[2], the main beam could be switched 
from − 30° to 30° with a faster response. In Ref. [3], a 1D 
beam-switching antenna was proposed based on a PIN-loaded 
reflector. The maximum tilting angle is 30° by controlling the 
states of diodes. In Ref. [4], a 2D beam-switching antenna was 
presented at 5.5 GHz based on a 6×6 reconfigurable partially 
reflective surface (PRS). By controlling the states of PIN di‑
odes in different sections of PRS, a ±47° beam switch could 
be achieved in the azimuth plane. Based on the cylindrical 
metasurface surrounding an active dipole, a 360° beam hori‑
zontal sweeping and a discrete elevation switching between  
−22° and 22° were achieved in Ref. [5]. To achieve continu‑
ous beam scanning, a novel phased array was proposed in Ref. 
[6] for 5G millimeter-wave wireless communications. Different 
from the traditional phased arrays that employ phase shifters 
to electronically control the beam direction, the ±60° scanning 
beam was realized based on a 256-element active electromag‑
netic (EM) surface fed by a horn.

Likewise, a 196-element reflective metasurface in Ref. [7] 
was used to change the beam direction of an antenna, which 
enabled continuous beam scanning within ±20° by controlling 
PIN diodes loaded on phase delay lines. In Ref. [8], a varactor-
controlled reflective metasurface fed by a monopole was de‑
signed to steer the beam within ± 50° in elevation directions This work was supported by ZTE Industry⁃University⁃Institute Coopera⁃

tion Funds under Grant No. HC⁃CN⁃20220719005.
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in a single polarization. For dual-polarized use, Ref. [9] pro‑
posed a beam-scanning cross dipole antenna loaded with an 
active reflective metasurface with fewer component counts, 
achieving ±20° beaming scanning via varactor reconfiguration.

In this paper, a beam-scanning antenna is presented based 
on a 2×2 active reflective metasurface. For dual-polarization 
use, the surface is excited by a printed cross dipole. By tuning 
the voltages applied across the varactors, the reflective phases 
of the elements can be reconfigured thus deflecting the beam 
direction in the XOZ and YOZ planes.
2 Design of Beam-Scanning Antenna

2.1 Reconfigurable Reflective Element
The proposed reconfigurable reflective element is illus‑

trated in Fig. 1. The element consists of two Rogers RO4003 
dielectric substrates (εr=3.55, tanδ = 0.002 7) with a 6 mm 
thick air spacing between them. A cross and a cross-shaped 
ring are separately printed on the top and bottom sides of the 
upper dielectric substrate with a thickness of 0.508 mm. Four 
varactors are embedded in the cross to adjust the equivalent 
electrical length of the cross strips. The capacitance values of 
the four varactors are equal to C1. As a result, the resonance 
frequency of the cross is tunable with the varactor value C1 changing. Four inductors and metal vias are used to connect 
the cross strips to the cross-shaped folded annular ring. Com‑
pared to a square ring, the cross-shaped design lengthens the 
path of the surface current without expanding the transversal 
dimensions. The ground plane is designed on the top side of 
the substrate with a thickness of 0.813 mm. The element fea‑
tures a symmetric structure for polarization-insensitive fre‑
quency response.

The proposed reflective element is modeled in the High-
Frequency Structure Simulator (HFSS) and simulated with pe‑
riodic boundaries. According to the parameters of Skyworks 
SMV1430 varactor diodes, the varactors are modeled as a tun‑
able capacitor in series with a 3 Ω resistor and a 0.45 nH in‑
ductor. Fig. 2 shows the simulated results of the reflective am‑
plitude and phase response. A smooth reflective phase re‑
sponse is observed from 2.5 GHz to 4.5 GHz. When the ca‑
pacitance value C1 changes from 0.31 pF to 1.1 pF, the phase 
curve moves to a lower band thus changing the reflective 
phase in the operated band. In other words, there is a phase 
shifting between the reflected and incident waves due to the 
phase compensation by the element. As Fig. 2 shows, the 
phase shifting at 3.5 GHz is about 214° with a reflective am‑
plitude no lower than − 2 dB. The cross-polarization compo‑
nent of the reflected wave remains below −27 dB.
2.2 Beam Steering Antenna Design

To operate the varactors, the DC bias circuit is designed as 
shown in Fig. 3. The varactor anodes loaded on each element 
are connected via the cross strip. A central grounding metal 

Figure 1. Geometry of the proposed reconfigurable reflective element: 
(a) 3D view; (b) top view (L1=38.5 mm, L2=30 mm, L3=7 mm, 

W1=1 mm, W2=1 mm, and W3=2 mm)

(b)(a)

W1
W2

Figure 2. Reflective amplitude and phase response versus frequencies at 
different capacitance values of each varactor

Figure 3. Geometry of the proposed antenna: (a) 3D view; (b) structure 
of bias circuit for varactors; (c) printed cross dipole
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post with a diameter of 0.6 mm sets the anode potential to 
zero. The cathodes of the varactor diodes are connected by the 
cross-shaped ring to share a common biasing point. Another 
metal post is designed through the ground plane at a distance 
of 17.9 mm away from the grounding post. A hole is etched on 
the ground plane to isolate metal posts from the ground plane. 
At the bottom end of the post, a fan-like open stub acts as a 
low-pass filter for isolating the RF signal from the DC bias sig‑
nal. Together with the post, the bias line stretching from the 
cross-shaped ring is designed to offer positive electrical poten‑
tial to the cathodes of the diodes. As a result, the four shunt di‑
odes are reverse biased with the same capacitance value.

To achieve a 2D scanning beam, the proposed element is ar‑
ranged along the x and y directions to form a 2×2 reflective sur‑
face. A printed cross dipole operating at 3.5 GHz radiates ±45° 
polarization electromagnetic waves and feeds the surface. The 
four elements are set surrounding the cross dipole and share a 
common ground. Fig. 3 shows that the bias structures of the ele‑
ments are designed in central symmetry. The overall size of the 
proposed antenna is about 1.05λ0×1.05λ0×0.3λ0, where λ0 is 
the 3.5 GHz free-space wavelength. The capacitance values of 
different elements are C1, C2, C3, and C4 respectively (Fig. 3). 
Therefore, four independent DC bias voltages are needed. 
When the bias voltage applied across the varactors of each ele‑
ment varies, the re-radiating 
phase of the reflective element is 
changed. According to the in-
phase superposition principle, the 
wavefront will incline thus letting 
the beam squint. In summary, 
beam scanning can be achieved 
by tuning the bias voltages of the 
reflective surface.
3 Simulation and Mea⁃

surement Results
The proposed antenna is simu‑

lated, fabricated, and measured 
to further verify its scanning per‑
formance， as shown in Fig. 4. 
Nylon support components are 
used to obtain a 6 mm thick air 
spacing between the reflective 
surface and the common ground. 
The desired values of C1, C2, C3, and C4 are controlled by corre‑
sponding voltages U1, U2, U3, and 
U4. The proposed antenna is 
simulated and measured at five 
states as listed in Table 1.

Fig. 5 shows the simulated and 
measured S parameters for differ‑
ent states. Within the operated 

band from 3.4 GHz to 3.6 GHz, the measured S11 values are less 
than −11.0 dB, while the simulated S11 is less than −11.2 dB. 

Table 1. Beam states of the proposed antenna and the setup of varactors

Beam State
I
II
III
IV
V

Varactor Capacitance/pF
C1

0.31
0.31
1.10
0.31
1.10

C2
0.31
1.10
0.31
0.31
1.10

C3
0.31
1.10
0.31
1.10
0.31

C4
0.31
0.31
1.10
1.10
0.31

Varactor Biasing Voltage/V
U1
30
30
0

30
0

U2
30
0

30
30
0

U3
30
0

30
0

30

U4
30
30
0
0

30

Figure 4. Fabricated antenna prototype under measurements: (a) S param⁃
eter measurement setup and (b) radiation pattern measurement setup

Figure 5. S parameters at different beam states: (a) simulated S11; (b) simulated S12; (c) measured S11; 
(d) measured S12
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The measured S12 is less than −15.6 dB, while the simulated S12 is less than −23.8 dB.
The radiation patterns for various steering states were 

measured using a near-field antenna measurement system 
in an anechoic chamber. Fig. 6 shows the simulated and 
measured radiation patterns for 45° polarization in both 
the XOZ and YOZ planes when Port 1 is excited. By recon‑
figuring the bias voltages, the main beam can be deflected 
as anticipated.

When all bias voltages are set to 30 V, the main beam 
points directly upwards without beam steering, corresponding 
to State I. By adjusting U2 and U3 to 0 V, the measured steering 
angle at 3.5 GHz is −25°, which corresponds to State II. When 
bias voltages U1 and U4 are tuned to 0 V, while U2 and U3 re‑
main at 30 V, the antenna operates in State III with a steering 
angle of 29° in the XOZ plane. Similarly, when the bias volt‑
ages are configured for States IV and V, the maximum scanning 
range in the YOZ plane spans from −27° to 29°. The measured 
results align well with the simulated ones, indicating the accu‑

racy and reliability of the proposed antenna design.
4 Conclusions

In this paper, a continuous beam steering antenna based on 
the 2×2 active reflective metasurface is modeled and fabri‑
cated. By changing the voltages applied on the active reflec‑
tive metasurface, the proposed antenna can steer the beam in 
both the XOZ and YOZ planes in the frequency range of 3.4–
3.6 GHz. The measured reflection coefficient is less than 
−10 dB and the port isolation is greater than 15 dB. The mea‑
sured scanning ranges are −25° to 29° and −27° to 29° in the 
XOZ and YOZ planes, respectively. The antenna is a good 
candidate for application to beam reconfigurable communica‑
tion systems.

References
[1] DAS P, MANDAL K, LALBAKHSH A. Beam-steering of microstrip antenna 

using single-layer FSS based phase-shifting surface [EB/OL]. (2021-12-14)

Figure 6. Radiation patterns of different beam states: (a) State Ⅰ in the XOZ plane; (b) State Ⅱ in the XOZ plane; (c) State Ⅲ in the XOZ plane; 
(d) State Ⅰ in the YOZ plane; (e) State Ⅳ in the YOZ plane; (f) State Ⅴ in the YOZ plane

(a) (b) (c)

(d) (e) (f)
Co-polarization, simulated
Co-polarization, measured

Cross-polarization, simulated
Cross-polarization, measured

Rad
iati

on 
pat

tern
/dB

i

10
0

-10
-20
-30
-40
-30
-20
-10

0
10 -180

0
30 -30

60 -60

90 -90

120 -120

150 -150 -180

0
30 -30

60 -60

90 -90

120 -120

150 -150 -180

0
30 -30

60 -60

90 -90

120 -120

150 -150

-180

0
30 -30

60 -60

90 -90

120 -120

150 -150 -180

0
30 -30

60 -60

90 -90

120 -120

150 -150 -180

0
30 -30

60 -60

90 -90

120 -120

150 -150

Rad
iati

on 
pat

tern
/dB

i

10
0

-10
-20
-30
-40
-30
-20
-10

0
10

88



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

LIU Zhipeng, LI Kexin, CAI Yuanming, LIU Feng, GUO Jiayin 

Dual-Polarized 2D Beam-Scanning Antenna Based on Reconfigurable Reflective Elements   Research Papers

[2023-05-01].https://onlinelibrary.wiley.com/doi/10.1002/mmce.23033
[2] SURYAPAGA V, KHAIRNAR V V. Pattern reconfigurable antenna using 

programmable metasurface [C]//Proc. 3rd International Conference on Arti‑
ficial Intelligence and Signal Processing (AISP). IEEE, 2023: 1–5. DOI: 
10.1109/AISP57993.2023.10134935

[3] MAJUMDER B, MUKHERJEE J, KRISHNAMOORTHY K, et al. A novel 
beam steering dipole antenna using phase varying metasurface as reflector 
[C]//Proc. IEEE International Conference on Antenna Innovations & Mod‑
ern Technologies for Ground, Aircraft and Satellite Applications (iAIM). 
IEEE, 2017: 1–4. DOI: 10.1109/IAIM.2017.8402618

[4] NADEEM M, SHOAIB N, RAZA A, et al. 2-dimensional (2D) beam 
steering-antenna using active PRS for 5G applications [J]. Micromachines, 
2022, 14(1): 110. DOI: 10.3390/mi14010110

[5] SURIER A, HAKEM N, KANDIL N. 3D beam steering cylindrical an‑
tenna [C]//Proc. IEEE International Symposium on Antennas and Propaga‑
tion and USNC-URSI Radio Science Meeting (AP-S/URSI). IEEE, 2022: 
1588–1589. DOI: 10.1109/AP-S/USNC-URSI47032.2022.9886357

[6] LI Y Z, REN Y L, YANG F, et al. A novel 28 GHz phased array antenna 
for 5G mobile communications [J]. ZTE communications, 2020, 18(3): 20–
25. DOI: 10.12142/ZTECOM.202003004

[7] WANG Z L, GE Y H, PU J X, et al. 1 bit electronically reconfigurable 
folded reflectarray antenna based on p-i-n diodes for wide-angle beam-
scanning applications [J]. IEEE transactions on antennas and propagation, 
2020, 68(9): 6806–6810. DOI: 10.1109/TAP.2020.2975265

[8] NAM I J, LEE S, KIM D. Miniaturized beam reconfigurable reflectarray an‑
tenna with wide 3-D beam coverage [J]. IEEE transactions on antennas 
and propagation, 2022, 70(4): 2613 – 2622. DOI: 10.1109/
TAP.2021.3083732

[9] JIA Y T, JIANG G S, LIU Y, et al. Beam scanning for dual-polarized an‑
tenna with active reflection metasurface [J]. IEEE antennas and wireless 
propagation letters, 2022, 21(9): 1722 – 1726. DOI: 10.1109/
LAWP.2022.3176427

Biographies

LIU Zhipeng received his BS degree from Xidian University, China in 2021. 
He is currently pursuing his master􀆳s degree in electromagnetic wave and micro‑
wave technology at Xidian University. His current research interests include re‑
configurable metasurface antennas and base station antennas.

LI Kexin received his BS degree from Shandong University of Science and 
Technology, China in 2021. He is currently pursuing his master 􀆳 s degree in 
new-generation electronic information technology at Xidian University, China. 
His current research interests include phased array design and reconfigurable 
antenna design.

CAI Yuanming (ymcai@xidian.edu.cn) received his BS degree in electronic in‑
formation engineering and PhD degree in electromagnetic wave and microwave 
technology from Xidian University, China in 2011 and 2016, respectively. He is 
currently an associate professor with the National Key Laboratory of Radar De‑
tection and Sensing, the School of Electronic Engineering, Xidian University. 
His current research interests include multiband and wideband antennas, circu‑
larly polarized antennas, and reconfigurable antennas.

LIU Feng received his BS and PhD degrees from Xidian University, China in 
2016 and 2021, respectively. He has been a senior RF system engineer in the 
RCH System Design Department of ZTE Corporation since 2021.

GUO Jiayin received her BS degree in electronic information engineering and 
PhD degree in electronic science and technology from Xidian University, China 
in 2016 and 2022, respectively. She has been a senior RF engineer in the RCH 
System Design Department of ZTE Corporation since 2022.

89



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

WANG Qianglin, ZHANG Xiaoning, YANG Yi, FAN Chenyu, YUE Yangyang, WU Wei, DUAN Wei 

Research Papers     VFabric: A Digital Twin Emulator for Core Switching Equipment   

VFabricVFabric:: A Digital Twin Emulator for  A Digital Twin Emulator for 
Core Switching EquipmentCore Switching Equipment

WANG Qianglin1, ZHANG Xiaoning1, YANG Yi1, 

FAN Chenyu1, YUE Yangyang2, WU Wei2, DUAN Wei2

(1. School of Information and Communication Engineering, University of 
Electronic Science and Technology of China, Chengdu 610000, China；
 2. ZTE Corporation, Shenzhen 518057, China)

DOI: 10.12142/ZTECOM.202501012

https://kns.cnki.net/kcms/detail/34.1294.TN.20250319.0908.002.html, 
published online March 19, 2025

Manuscript received: 2023-10-24

Abstract: The proliferation of heterogeneous networks, such as the Internet of Things (IoT), unmanned aerial vehicle (UAV) networks, and 
edge networks, has increased the complexity of network operation and administration, driving the emergence of digital twin networks (DTNs) 
that create digital-physical network mappings. While DTNs enable performance analysis through emulation testbeds, current research focuses 
on network-level systems, neglecting equipment-level emulation of critical components like core switches and routers. To address this issue, 
we propose vFabric (short for virtual switch), a digital twin emulator for high-capacity core switching equipment. This solution implements vir‑
tual switching and network processor (NP) chip models through specialized processes, deployable on single or distributed servers via socket 
communication. The vFabric emulator can realize the accurate emulation for the core switching equipment with 720 ports and 100 Gbit/s per 
port on the largest scale. To our knowledge, this represents the first digital twin emulation framework specifically designed for large-capacity 
core switching equipment in communication networks.
Keywords: digital twin network; core switch/router; sockets; network emulation

Citation (Format 1): WANG Q L, ZHANG X N, YANG Y, et al. VFabric: a digital twin emulator for core switching equipment [J]. ZTE Commu‑
nications, 2025, 23(1): 90–100. DOI: 10.12142/ZTECOM.202501012
Citation (Format 2): Q. L. Wang, X. N. Zhang, Y. Yang, et al., “VFabric: a digital twin emulator for core switching equipment,” ZTE Communi⁃
cations, vol. 23, no. 1, pp. 90–100, Mar. 2025. doi: 10.12142/ZTECOM.202501012.

1 Introduction

In recent years, with the fast development of information 
and communication technology (ICT), such as big data, 
cloud computing, and artificial intelligence (AI), there 
has been a rise in emerging heterogeneous communica‑

tion networks, such as the Internet of Things (IoT) [1], un‑
manned aerial vehicle (UAV) networks[2], and edge net‑
works[3]. These different network forms have complex opera‑
tion and administration requirements. For example, UAV net‑
works should effectively adapt to dynamic topology due to 
UAV flight and satisfy the quality of service (QoS) require‑
ments of various types of traffic[4]. Meanwhile, the number of 
nodes or mobile devices connected to communication net‑
works is increasing explosively, which brings scalability and 
flexibility challenges. In general, current communication net‑
works have become increasingly complex and difficult to op‑
erate and manage.

To solve this problem, the digital twin network (DTN) tech‑
nology has been introduced to facilitate the effective manage‑
ment of communication networks[5]. The concept of digital twin 
(DT) has been developed in many industries for decades. To‑
day, the DT technology has been widely applied in a large va‑
riety of domains, including smart manufacturing Industry 
4.0[6], aviation[7], healthcare[8], communication networks[9], and 
smart grid systems[10]. The basic idea of DT is a digital repre‑
sentation or virtual model of a single physical object. It is a 
system that focuses on producing a virtual model of a physical 
entity with high fidelity. Such a system needs to be intelligent 
and persistently evolving[11]. A DT system generally contains 
three main modules: a physical object in physical space, a vir‑
tual object in virtual space, and the data connection between 
the two spaces. Leveraging the DTN technology, a high-
fidelity emulation system is established for efficiently control‑
ling and managing dynamic and complex communication net‑
works. The DTN emulation system allows network operators to 
analyze and forecast network performance, develop network 
solutions, precisely pinpoint network failures, and upgrade 
networks to accommodate the demands of a growing user base 
and the integration of new technologies[12].

This work was supported in part by the National Natural Science Founda⁃
tion of China (NSFC) under Grant Nos. 62171085, 62272428, 62001087, 
U20A20156, and 61871097 and the ZTE Industry⁃University⁃Institute Coop⁃
eration Funds under Grant No. HC⁃CN-20220722010.
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According to the definition and four core elements of the 
digital twin network[13], it can be designed as a “three-layer 
three-domain dual-closed-loop” architecture (Fig. 1). The 
three layers include the physical network layer, the twin net‑
work layer, and the network application layer, while the three 
domains correspond to the data domain, model domain, and 
management domain of the twin network layer. These domains 
are respectively implemented by the data-sharing repository, 
service mapping model, and network twin management subsys‑
tems. Meanwhile, the “dual-closed-loop” refers to the inner 
closed-loop optimization based on the service mapping model 
and the outer closed-loop control, feedback, and optimization 
based on the three-layer architecture. The physical network 
layer is a component of the digital twin network, where various 
network elements exchange network data and control informa‑
tion with the network twin body through the twin southbound 
interface. The twin network layer is the hallmark of the digital 
twin network system, containing three critical subsystems: the 
data sharing repository, service mapping model, and network 
twin management subsystems. The network application layer 
controls the digital twin network. Network applications input 
requirements to the twin network layer through the twin north‑
bound interface and deploy services in the twin network layer 
via model instances.

In recent years, some research works have been conducted 

on applying digital twin technology in the field of communi‑
cation networks (i. e., DTN). DTN is a key enabler for effi‑
cient management in communication networks. In particular, 
the virtual models of DTN can reflect the dynamic character‑
istics of physical communication networks (e.g., dynamic net‑
work topology, growing traffic flows, or devices)[14]. Thus, the 
network administrators can effectively manage the network 
considering the network dynamics. For example, the network 
administrators can easily perform network planning and com‑
plete traffic engineering with the help of DTN technology. 
Therefore, the DTN can accurately forecast the future net‑
work state and provide optimal solutions. On the other hand, 
current DTN research works always study the entire network 
system (such as 6G networks, vehicular networks, and the 
IoT) [15] and do not investigate the virtual model of communi‑
cation network equipment. In fact, how to build an accurate 
DT virtual model for communication network equipment, es‑
pecially high-capacity core network switches or routers, is an 
important issue to be studied. Since the core switch or router 
has a large-capacity (i. e., a large number of ports, and each 
port with at least a rate of 100 Gbit/s), achieving high-fidelity 
emulation for large-capacity communication equipment is a 
great technical challenge.

To address this issue, we develop a digital twin emulator 
for large-capacity core switching equipment, called vFabric 

Figure 1. Architecture of digital twin network
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(short for “virtual switch”), which enables performance 
troubleshooting and optimization. When a specific system 
module fails in practice, the corresponding module in vFab‑
ric can be analyzed to identify possible faults, quickly locate 
the problem, and provide fault diagnosis. At the same time, 
when a system performance bottleneck occurs, various de‑
sign schemes can be verified and tested in vFabric, and their 
performance, reliability, and efficiency can be evaluated to 
ensure the selection of the optimal design. We use the vFab‑
ric emulator to simulate the Clos network inside the core 
switching equipment and build virtual models for switching 
chips and network processor (NP) chips, which are key com‑
ponents of the core switch/router. For small-scale core 
switching equipment, the vFabric emulator is implemented 
on a single physical server. For large-scale core switching 
equipment, the vFabric emulator is distributed across mul‑
tiple physical servers interconnected via sockets. Our vFab‑
ric emulator achieves accurate emulation of core switching 
equipment with up to 720 ports and 100 Gbit/s per port on 
the largest scale. To the best of our knowledge, this is the 
first study on DT emulation for large-capacity core switching 
equipment in the field of communication networks. Our work 
addresses the gap in digital twin applications for communica‑
tion devices and pioneers the application of DT to communi‑
cation devices.

The remainder of this paper is organized as follows. Section 
2 reviews related work. Section 3 presents the system model 
and technical challenges, while Section 4 details the design of 
vFabric. Section 5 presents the implementation of vFabric and 
Section 6 provides the emulation results. Section 7 concludes 
the paper.
2 Related Work

Digital twins have been applied in various domains. Here, 
we only review important areas such as the Internet of Ve‑
hicles (IoV), edge networks, and 6G.

1) IoV: The digital twin-assisted decision-making frame‑
work for the IoV leverages the integration of communication, 
sensing, and computing to enhance vehicle collaboration. FU 
et al. [16] introduced a digital twin technology concept that 
maps vehicles and roadside infrastructure from physical space 
to cyberspace to form simulated and reconstructed virtual enti‑
ties. Ref. [16] also discussed a multi-agent system (MAS) ap‑
proach to modeling connected autonomous driving, using arti‑
ficial intelligence algorithms such as deep reinforcement 
learning (DRL) to enable decision-making. It highlighted the 
limitations of traditional multi-agent deep reinforcement learn‑
ing (MADRL) methods, where agents are not connected with 
each other, and emphasized the importance of enabling agent-
to-agent communications. QIN et al. [17] investigated pricing 
strategies and resource management between vehicles and mo‑
bile edge network (MEC) servers when combining digital 
twins and MEC in the IoV. Ref. [17] also established a dy‑

namic digital twin for the air-assisted IoV to capture time-
varying resource supply and demand, enabling unified re‑
source scheduling and allocation.

2) Edge networks: PILLAI et al. [18] implemented a DT sys‑
tem in vehicular networks to enhance edge computing capa‑
bilities. The DT collected data from roadside units (RSUs) 
and optimized task offloading and resource allocation for effi‑
cient system load management. DAI et al.[19] integrated digital 
twin technology into vehicular edge computing networks to im‑
prove network management and offloading efficiency. The pro‑
posed adaptive digital twin-enabled network utilized virtual 
representations of the physical network, and a deep reinforce‑
ment learning-based offloading scheme was designed to mini‑
mize latency[19]. DAI et al. [20] explored a DTN-assisted MEC 
system, aiming to maximize the number of service requests 
served by MECs or minimize the load on the cloud. GUO et al.
[21] focused on utilizing digital twin technology to enhance the 
management efficiency of physical entities in edge computing 
networks. The proposed mechanism included a time-
frequency correlation-based activity estimation model and a 
chaotic particle swarm optimization algorithm for network 
sensing edge deployment.

3) 6G: NJOKU et al.[22] explored the potential application of 
digital twin technology in 6G communication systems. They 
emphasized the need for innovative architectures and en‑
abling technologies to meet the demanding requirements of 
6G systems. TAO et al. [23] proposed a software-defined DTN 
architecture with virtualization for adaptive 6G service re‑
sponse. They also introduced a deep reinforcement learning-
based resource orchestration algorithm to optimize service 
quality. LU et al.[24] focused on integrating digital twin technol‑
ogy with edge networks to address the challenges in building 
6G networks with ubiquitous connectivity, low latency, and en‑
hanced edge intelligence.

4) Data communication networks: WEI et al. [25] discussed 
data-driven routing, a typical network function under the 
DTN framework, and demonstrated the potential of DTNs to 
solve traditional network problems. In SDN-based networks, 
RAJ et al.[26] proposed a data representation-based DTN archi‑
tecture that integrates knowledge graphs (KGs) for data mod‑
eling and storage. ONO[27] et al. presented a scheme called 
Area-Controlled Mobile Ad-Hoc Networking (AMoND). The 
digital twin used in AMoND focuses on managing node loca‑
tion information and does not need to fully replicate real-
world environments on a computer.

While the related works presented above focus on building 
DTN models for entire network systems (such as 6G and edge 
networks) without considering the virtual modeling of commu‑
nication network equipment, our work specifically addresses 
high-fidelity emulation of large-capacity core switching equip‑
ment. To our knowledge, this is the first study on developing a 
DT model for core switches/routers.

92



ZTE COMMUNICATIONS
March 2025 Vol. 23 No. 1

WANG Qianglin, ZHANG Xiaoning, YANG Yi, FAN Chenyu, YUE Yangyang, WU Wei, DUAN Wei 

   VFabric: A Digital Twin Emulator for Core Switching Equipment    Research Papers

3 System Model and Technical Challenges
As an important transmission and forwarding device, large-

capacity core switching equipment (e.g., the core routers Hua‑
wei NetEngine 8000[28], Cicso 8000[29], and T8000[30], and the 
core switch ZXR10 9900/9900-S[31]) has been widely deployed 
in various scenarios including backbone networks, campus 
networks, data center networks, etc. To satisfy the requirement 
of high bandwidth and intelligent management, large-capacity 
core switching equipment has the following characteristics: 
high reliability, scalability, and performance. These features 
enable enhanced network bandwidth, elimination of bottle‑
necks, congestion mitigation, and support for diverse traffic in‑
terfaces[32]. Therefore, the performance of large-capacity core 
switching equipment directly impacts the stability and QoS of 
the whole communication network.
3.1 Logic Model of Large-Capacity Core Switching 

Equipment
Generally, large-capacity core switching equipment com‑

prises four fundamental modules (Fig. 2): the input module, 
output module, switching fabric, and control module. The 
switching fabric is composed of multiple basic switching 
units[33]. The first three modules constitute the data plane of 
switching equipment, while the last module belongs to the 
control plane. The data plane is responsible for packet for‑
warding, while the control plane is responsible for generating 
the data path in the switching fabric. During packet forward‑
ing in large-capacity core switching equipment, the control 
module first calculates the routing path of the incoming pack‑
ets, i.e., generating the Routing Information Base (RIB). Sub‑
sequently, the Forwarding Information Base (FIB) is gener‑
ated from the RIB and installed in basic switching units of the 
switching fabric module. This ensures accurate transmission 
of incoming packets from the input port to the output port 
through the switching fabric. Inside large-capacity core 
switching equipment, the switching fabric and its correspond‑
ing scheduling algorithm play an important role in switching 
performance (throughput and delay). At present, the fre‑
quently used switching fabrics are single-stage crossbar[34] 
and multistage Clos networks[35]. Since the number of ports 
and the read/writing rate of shared memory limit the perfor‑

mance of single-stage crossbar, the multistage Clos network is 
more broadly used than the single-stage crossbar. When the 
number of ports increases, compared with the single-stage 
crossbar, the multistage Clos network can effectively reduce 
the number of crossover nodes by an order of magnitude. In a 
multistage Clos network, two basic switching units are con‑
nected by only one link, but multiple paths exist between the 
arbitrary input port and output port[35]. Therefore, the multi‑
stage Clos network can support multipath transmission and 
achieve load balancing for traffic. On the other hand, in the 
multistage Clos network, the basic switching units of each 
stage have the same scale (the same number of input and out‑
put ports), which means it has good scalability. Thus, small-
scale basic switching units can be used to construct a large-
scale/capacity Clos network. In summary, the multistage Clos 
network has the following advantages: modularity, non-
blocking with multiple paths, and good scalability. These fea‑
tures make it a preferred choice for commercial off-the-shelf 
(COTS) core routers or switches[36].

The three-stage Clos network consists of an input stage, an 
intermediate stage, and an output stage. The input stage com‑
prises k n×m crossbars, where n denotes the number of input 
ports of each crossbar and m represents the number of output 
ports of each crossbar. The intermediate stage consists of m k×k 
crossbars, where k denotes the number of input and output 
ports of each crossbar. The output stage is composed of k m×n 
crossbars, where m denotes the number of input ports of each 
crossbar and n represents the number of output ports of each 
crossbar. Therefore, the three-stage Clos network can be de‑
noted as C(n, m, k).
3.2 Hardware Model of Large-Capacity Core Switching 

Equipment
Based on the logic model of large-capacity core switching 

equipment, we further illustrate its hardware model. The hard‑
ware model of core switching equipment is composed of a 
main control board, a service board, and a switching board. 
The main control board corresponds to the control module in 
the logic model, which generates the routing path inside the 
switching equipment by the control software, such as the Open 
Shortest Path First (OSPF) protocol, running on the Linux op‑
erating system, and sends the FIB to the switching chips on 
the data plane. The main control board communicates with the 
service board and the switching board with socket network 
communication over Ethernet. The service board comprises 
the NP chip, the interface chip, and the switching chip. The 
main work of the NP chip is to perform traffic flow scheduling 
and QoS management. It is important that each port in the ser‑
vice board is bidirectional, serving as both an input and an 
output port. The switching board consists solely of the switch‑
ing chip, which is responsible for high-speed switching. Key 
components of the switching chip include the Parser (for pars‑
ing packet headers), the Forwarding Table (for recording Figure 2. Logic model of large-capacity switching equipment

Controlmodule

Inputmodule Switchingfabric Outputmodule
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packet forwarding paths), and the Buffer (for storing packets 
during switching), among others.
3.3 Technical Challenges for DT Model

Since large-capacity core switching equipment is a key en‑
abler for various types of communication networks, e.g., back‑
bone networks, campus networks, and data center networks, it 
is necessary to develop a DT model for such equipment[37]. 
This allows network researchers and operators to test and 
verify the new technology in the DT model and obtain accu‑
rate emulation results. Undoubtedly, the DT model for core 
switching equipment can help design network optimization al‑
gorithms, analyze network performance, and forecast network 
status under new traffic patterns.

The main technical challenge in developing a DT model for 
high-capacity core switching equipment is accurately emulat‑
ing the high bandwidth and large traffic environment of core 
routers/switches. Since the core switching equipment com‑
prises a large number of service boards and switching boards 
(normally having 20 ports, each supporting 100 Gbit/s at 
least), its DT model needs to emulate large volumes of traf‑
fic, which brings a great challenge for the existing simula‑
tion tools (e.g., OPNET, OMNeT++, and NS-3). Another im‑
portant issue is the scalability of the core switching equip‑
ment. By combining varying numbers of service boards and 
switching boards, larger-scale core switching equipment can 
be created, which enhances the emulation difficulty of the 
DT model.
4 Design of VFabric

In this paper, to address the aforementioned challenges, we 
propose vFabric, a digital twin emulator for large-capacity 
core switching equipment. The name “vFabric” is derived 
from “virtual switch”, reflecting its purpose. Our vFabric is a 
distributed architecture with high scalability and accuracy. It 
not only simulates the details of the core switch, but also en‑
hances computational capacity by deploying across multiple 
servers as the scale of hardware 
equipment increases.
4.1 Testbed Architecture

The large-capacity core switching 
equipment consists of a main control 
board, a service board, and a switch‑
ing board. In this study, we develop 
vFabric on two servers. The main 
control board and the switching 
board are deployed on Server A, 
while the service board is deployed 
on Server B. In vFabric, the NP and 
switching processes emulate the 
functionality of the chips on actual 
network cards. Server A supports a 

maximum scale of 32 switching processes, while Server B sup‑
ports up to 36 NP processes and 32 switching processes. Each 
NP process is connected to 20 port threads, each capable of 
sending and receiving packets at 100 Gbit/s. In vFabric, the 
packet transmission route is as follows: packets are generated 
from the ports and sequentially handled by the NP processes in 
Server A, the switching processes in Server A, the switching 
processes in Server B, the switching processes in Server A, the 
NP processes in Server A, and finally the port threads. All 
switching processes utilize round-robin scheduling to transmit 
the packets (Fig. 3).

The NP and switching processes have a similar architec‑
ture, consisting of a shell and a core (Fig. 4). The shell primar‑
ily implements data forwarding, while the core can execute 
packet processing modules for packet manipulation. In the 
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shell, there are two queues (Ring a and Ring b) and two 
threads (receiving and sending threads). The core also con‑
tains two queues (Ring 1 and Ring 2). The receiving thread 
transfers packets between the shell and core through different 
queues, while the sending thread transfers packets to other 
chip processes.
4.2 Inter-Process Communication

The simulation process in vFabric involves a continuous 
flow of packet transmission and reception, which may impede 
the simulation speed and rapidly consume computation re‑
sources. To address this issue, we pre-configure memory 
based on simulation patterns and adopt a high-speed inter-
process communication solution based on a multi-threading 
mechanism. This solution is designed to simulate the commu‑
nication process between chips.

For small-scale deployments, vFabric can operate on a 
single server. We utilize the ring queue based on shared 
memory to facilitate communication between chip processes. 
The ring queue is a data structure that connects the front and 
rear ends circularly, following the first-in-first-out (FIFO) prin‑
ciple. It utilizes a linear array for storing data and offers 
simple data organization and efficient management.

In this paper, we present the implementation of high-speed 
data exchange between chip processes utilizing a producer-
consumer model, as illustrated in Fig. 5. The model involves 
two threads: the producer and the consumer, which interact by 
reading from and writing to shared memory. The producer and 
consumer need to perform mutual exclusion operations to en‑
sure data accuracy and safety.

For the ring queue, the sending thread acts as the pro‑
ducer, while the receiving thread serves as the consumer. En‑
suring sole control over the circular queue is of utmost impor‑
tance, permitting manipulation by a solitary thread exclu‑
sively at any given time. Specifically, when multiple produc‑
ers write to the ring queue at the same time, only one thread 
is allowed to write to the queue. Consumers should also ad‑
here to this principle in order to maintain data integrity and 
prevent conflicts.

On a large scale, vFabric is deployed across multiple serv‑

ers, utilizing sockets for communication between multiple 
servers. The socket is a widely used network communication 
technology based on the Transmission Control Protocol/Inter‑
net Protocol (TCP/IP) protocol. It provides two endpoints for 
bidirectional host-to-host interaction. In modern networks, 
sockets have various applications and can facilitate data trans‑
mission, control, and management through various protocols, 
meeting the requirements of different scenarios.
4.3 Synchronization Mechanism

The vFabric platform utilizes a distributed simulation sys‑
tem across multiple servers. In a distributed system, time is a 
pivotal concept. Simultaneously, the chip processes also rely 
on time for synchronized interaction.

Currently, commonly used time synchronization methods in 
distributed simulation systems include the Network Time Pro‑
tocol (NTP) and the Berkeley algorithm[38]. NTP is used to syn‑
chronize the time of various nodes in a computer network to 
ensure time consistency and accuracy. In contrast, the Berke‑
ley algorithm achieves time synchronization in distributed sys‑
tems by selecting a reference node to provide accurate time in‑
formation and synchronizing the clocks of other nodes through 
communication with the reference node.

However, these techniques have limitations. NTP is not suit‑
able for all types of distributed systems, and the Berkeley algo‑
rithm requires a central server, which may introduce a single 
point of failure. Therefore, we propose a time synchronization 
method for large-scale distributed simulation systems based 
on multi-level management (Fig. 6).

The time synchronization framework consists of three roles: 

Figure 5. Framework of the producer-consumer model Figure 6. Framework of the synchronization module
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the global coordinator, local coordinator, and member node. 
First, all member nodes send timestamps to the local coordina‑
tor node after each time slice and then enter a blocked state. 
The local coordinator node receives the timestamps from all 
the member nodes within its management range, sends the 
timestamps to the global coordinator node, and enters a 
blocked state. Upon receiving the timestamps from all local co‑
ordinator nodes, the global coordinator node advances the 
global clock and notifies all local coordinator nodes to con‑
tinue execution. After receiving the response, the member 
nodes continue their computational tasks, completing time 
synchronization. This process of time synchronization among 
the three types of nodes continues iteratively until the simula‑
tion concludes.
4.4 Exception Handling

To emulate real-world scenarios involving the process of a 
chip being uploaded and offloaded due to various factors such 
as equipment failure, maintenance, and updates, vFabric in‑
corporates periodic online and offline operations on the chip 
processes.

These operations often lead to fluctuations in system load, 
such as some nodes becoming overloaded while others remain‑
ing underutilized, which can impact the performance of the 
simulation system. To address such issues and ensure stability 
and efficiency in the cluster simulation system, effective han‑
dling of device online and offline processes is required to 
achieve traffic load balancing. Load balancing involves distrib‑
uting the workload evenly across the nodes in the simulation 
cluster, thereby optimizing resource utilization and preventing 
any individual node from becoming overloaded.

To address the challenges, this paper proposes a dynamic 
traffic load-balancing algorithm based on real-time device sta‑
tus information (e. g., cache utilization and CPU occupancy). 
By leveraging the real-time status information, the algorithm 
intelligently selects appropriate forwarding paths and dynami‑
cally reschedules data packets based on the actual device 
conditions. When a chip comes online, the packets are re‑
routed among all the chips in the system (Fig. 7a). This en‑
sures that the new chip can participate in the packet forward‑
ing process. On the other hand, when a chip goes offline, the 
packets originally residing in that chip are evenly distributed 
to other available chips (Fig. 7b). This ensures maximum 
transmission throughput to avoid packet loss while maximiz‑
ing system performance.
5 Implementation of VFabric

In this section, we present the implementation of vFabric 
in detail. We develop vFabric on the Linux platform through 
C++.
5.1 Implementation of Synchronization

In this paper, we establish a synchronization mechanism 

based on Redis and semaphores. Redis[39] is a mainstream non-
relational database that is distributed and scalable, with high-
performance. The semaphore, a mechanism for synchronous 
control among multiple threads or processes, coordinates the 
access sequence among different threads and processes to 
avoid data inconsistency. We deploy a Redis database on each 
server and connect them to form a distributed cluster. Each 
server can obtain the current time through the Redis database 
and perform corresponding time synchronization operations.

In the synchronization process between servers, each server 
contains a global synchronization thread. Each server is ex‑
ecuted alternately with a global synchronization thread until 
the simulation concludes (Fig. 8a).

In the synchronization process within the server, the 
threads inside the chip (such as receiving and sending 
threads) and the synchronization thread alternately execute 
the P(wait) operation and V(signal) operation on the synchroni‑
zation semaphore (Fig. 8b). P(wait) operation can block pro‑
cess execution, and V(signal) operation can resume process ex‑
ecution. With each alternation, the system time increases by 
one time slice until the simulation concludes.

(a)　Traffic load balancing when the receiving device is online

(b)　Traffic load balancing when the receiving device is offline
Figure 7. Schematic diagrams of online and offline processes

Receiving device a1 Offline receivingdevice a2 Receivingdevice a3 Receivingdevice a4

Transmittingdevice b1 Transmittingdevice b2 Transmittingdevice b3 Transmittingdevice b4
Route after offlineOriginal route

Route after offline

Receiving device a1 Receiving device a2 Receivingdevice a3 Receivingdevice a4

Transmittingdevice b1 Transmittingdevice b2 Transmittingdevice b3 Online transmittingdevice b4
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5.2 Implementation of Exception Handling
During both online and offline processes of the chips, it is 

crucial to effectively handle related events such as routing plan‑
ning, process management, process creation, and termination.

During the online process (Fig. 9a), the following steps are 
executed: 1) The required models (e.g., variables and pointers) 
are created; 2) once the models are created, the related pro‑
cesses and threads are initialized and blocked; 3) the synchro‑
nization thread starts alongside other chip threads; 4) the des‑
tination addresses of the packets are modified to ensure load 
balancing.

During the offline process (Fig. 9b), the following steps 

need to be taken: 1) The destination addresses of the packets 
are modified to prevent data loss; 2) while waiting for the syn‑
chronization thread to execute, the required chip threads are 
paused and removed; 3) the chip model is deleted to complete 
the device offline process.

The following is a typical process that a system performs 
over time. At the beginning of the offline process, the system 
time is recorded as t1, and the destination addresses of the 
packets are immediately updated. If the destination chip of a 
packet has already gone offline, the destination address is 
changed to another available chip. After waiting until the sys‑
tem time reaches t1+nT , the detection of destination addresses 
of internal chip packets is stopped. At this point, there are no 
more packets in the system with a destination address belong‑
ing to a chip that has already gone offline.

Here, t1 is any time and T in t1+nT represents the size of the 
time slice, and n is a variable that can be modified based on 
the server 􀆳 s performance. This variable can be determined 
according to specific circumstances to ensure that the detec‑
tion and forwarding of internal chip packets are completed 
within an appropriate time frame, effectively preventing the 
processing of packets destined for offline chips.
6 Performance Evaluation

In this section, we conduct extensive experiments to evalu‑
ate the performance of vFabric and collect statistics as the 
scale gradually increases.
6.1 Experiment Settings

1) Platform: The evaluation platform is a workstation carry‑
ing an Intel(R) Xeon(R) Silver 4210R CPU (each has 80 

Figure 8. Flow charts of synchronization

(b)　Inside-server synchronization

(a)　Cross-server synchronization Figure 9. Flow charts of exception handling

(b) Offline process(a) Online process
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cores). The RAM of the workstation is 260 GB and the operat‑
ing system is Linux Ubuntu 20.10. The version of Redis 
is 6.0.8.

2) Data scale: As mentioned earlier, the servers are divided 
into two types (A and B). Server A can support a maximum of 
36 NP processes and 32 switching processes, while Server B 
has a maximum of 32 switching processes. Each NP is con‑
nected to 20 100 Gbit/s port threads. We simulate the state of 
a real device forwarding 10 ms of traffic, while the total opera‑
tion takes slightly longer than 10 ms. The additional time is al‑
located after 10 ms to ensure that all packets are fully trans‑
mitted. The delay depends on system characteristics and simu‑
lation requirements. Each port sends a packet of varying 
length every 25 ns. Table 1 summarizes the proportion of pack‑
ets of different lengths. For example, the proportion of 64-byte 
messages is 449/1 000.
6.2 Results and Analysis

In the vFabric, each port generates 400 000 packets within 
a time interval of 10 ms. Table 2 summarizes the number of 
packets forwarded by different chips in a large-scale scenario.

The key indicators of the vFabric are the simulation time 
and packet loss rate. The simulation time of the system in‑
creases gradually with scale. For small-scale scenarios (4 NP 
processes and 32 switching processes), the total simulation 
time is approximately 100 s. For medium-scale scenarios (36 
NP processes and 32 switching processes), the total simulation 
time is approximately 1 000 s. For large-scale scenarios (one 
Server A and one Server B), the total simulation time is ap‑
proximately 4 800 s. These are generally in line with the ex‑
pected requirements.

Different synchronization algorithms have been introduced 
above. We compare the time taken by two synchronization 
methods, the Berkeley algorithm and the multi-level manage‑
ment, as shown in Fig. 10. The multi-level management ap‑
proach we adopted has a significant optimization effect. Spe‑

cifically, the designed total simulation time is designed to be 
10 ms, but in practice, it slightly exceeds this duration. Addi‑
tional time is allocated after 10 ms to ensure all packets are 
fully transmitted. The length of this delay depends on the sys‑
tem characteristics and simulation requirements. Experimen‑
tal results (Fig. 11) show that packet loss occurs when the 
simulation time is insufficient, and the packet loss rate gradu‑
ally decreases as the simulation time increases. However, an 
excessively long simulation time leads to prolonged simulation 
duration. In the vFabric, the total simulation time is set to 
10.1 ms.
7 Conclusions

In this paper, we present a large-capacity core switching 
equipment digital twin platform. The simulation platform pri‑
marily consists of NP chips and switching chips, with a simu‑
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Table 2. Number of packets forwarded by different chips
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Figure 10. Simulation time of different synchronization algorithms

Figure 11. Change of the packet loss rate with time
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lation time of 10 ms. The simulation results demonstrate the 
platform’s efficient and reliable simulation capabilities. It ac‑
curately replicates the operational state of large-capacity core 
switching equipment. Moreover, we have successfully imple‑
mented time synchronization and the ability to dynamically 
bring chip processes online and offline, further enhancing the 
platform’s functionality. The digital twin platform offers valu‑
able applications in diagnosing and troubleshooting network 
failures. It assists engineers in promptly identifying and re‑
solving issues, thereby enhancing the maintainability and 
manageability of the network. In the future, we will further en‑
hance the platform to meet more complex and diverse simula‑
tion requirements.
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Abstract: A novel method is developed by utilizing the fractional frequency based multi-range rulers to precisely position the passive inter‑
modulation (PIM) sources within radio frequency (RF) cables. The proposed method employs a set of fractional frequencies to create multiple 
measuring rulers with different metric ranges to determine the values of the tens, ones, tenths, and hundredths digits of the distance. Among 
these rulers, the one with the lowest frequency determines the maximum metric range, while the one with the highest frequency decides the 
highest achievable accuracy of the position system. For all rulers, the metric accuracy is uniquely determined by the phase accuracy of the de‑
tected PIM signals. With the all-phase Fourier transform method, the phases of the PIM signals at all fractional frequencies maintain almost 
the same accuracy, approximately 1°(about 1/360 wavelength in the positioning accuracy) at the signal-to-noise ratio (SNR) of 10 dB. Numeri‑
cal simulations verify the effectiveness of the proposed method, improving the positioning accuracy of the cable PIM up to a millimeter level 
with the highest fractional frequency operating at 200 MHz.
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1 Introduction

Passive intermodulation (PIM) interference has become 
increasingly prominent with the growing demands for 
high-power, wideband, and multi-carrier microwave 
communication systems, such as high-speed 5G and 

6G wireless communications, indoor distributed antenna sys‑
tems, and satellite communications[1]. PIM refers to the non‑
linear effect in high-power passive microwave devices due to 
the coupling mechanism of the electro-thermal and multi-
physical fields. PIMs are generally generated as distorted 
products from the emitting of high-power signals or multi-
carrier networks, which can interfere with the whole commu‑
nication process and eventually weaken the performance of 
the communication systems[2]. For a communication system, 
the PIM level has become an important technical index to 
evaluate the performance. Therefore, the strict PIM level is 
expected to minimize the interference and improve the sys‑
tem capacity. To obtain the limited PIM level and reduce the 
PIM interference efficiently, the generation mechanism of 
PIM interference has been first investigated. The results ob‑

tained in Refs. [3–6] indicate that the PIM interference is 
usually generated by multiple physical factors causing shape 
alterations and imperfect connection, such as temperature 
and humidity, oxidation and pollution of clean surfaces, and 
loose connection of devices. PIM interference can be pro‑
duced at the formed unknown sources that are formed within 
the radio frequency (RF) cables. Therefore, to further reduce 
PIM interference from the unknown PIM sources existing in 
the RF cables, the precise detection and location of PIM 
sources has attracted much interests.

Recently, the near-field scanning method has been used to 
detect the non-enclosed PIM source[7]. Based on the field nepho‑
gram of the plane above the device under test (DUT), which is 
constructed using the measured amplitude and phase informa‑
tion of the magnetic field, the field nephograms of the plane be‑
low the DUT are estimated. From the estimated nephograms, 
the positions of the PIM sources can be located. Similarly, emis‑
sion source microscopy (ESM) has been developed to locate 
PIM sources by measuring the amplitude and phase of the field 
on a plane a few wavelengths away from the DUT[8]. Different 
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from the amplitude and phase information evaluated in Refs. [7] 
and [8], the position of PIM sources in the base station antenna 
is identified by the acoustic vibration method[9], which detects 
the intensity of the modulated PIM signal. With the measured 
signals, another interesting method of the K-space multi-carrier 
signals is proposed to locate multiple PIM sources in microwave 
systems[10]. However, the relatively low positioning accuracy of 
these methods needs to be improved.

In this paper, a high positioning accuracy method called 
fractional frequency based multi-range rulers (FF-MRR) has 
been developed to locate the PIM sources in RF cables pre‑
cisely. The range of the PIM sources is obtained by process‑
ing each ranging datum of each fractional frequency signal. 
The diverse frequencies of ruler signals can be widely used 
across different scenarios without constructing complicated 
systems. The ruler signal is obtained by mixing a group of 
signals and the local oscillator signal in batches. Addition‑
ally, the proposed method is not limited by the narrow-band 
bandwidth because the fractional frequency signals can still 
be obtained by adjusting the local oscillator signal. With the 
adopted fractional frequencies, the higher frequency signals 
and the lower ones in the multi-range rulers can guarantee a 
high positioning accuracy and a long measured distance.

The remainder of this paper is as follows. The system model 
of FF-MRR for positioning the PIM sources is proposed in Sec‑
tion 2. The calculations of the precise location of PIM by FF-
MRR are deduced in detail in Section 3. In Section 4, the nu‑
merical simulation results of locating the PIM sources by the 
proposed FF-MRR method are discussed and analyzed. Sec‑
tion 5 concludes the paper.
2 System Model of FF-MRR

Compared with the pulse method based on timing ranging, 
it is easier for the phase method based on phase ranging to 
achieve higher accuracy[11]. However, the periodic ambiguity 
of phases makes the phase based methods difficult to pre‑
cisely position PIM, when the cable length exceeds one wave‑
length of the detected signal. Fig. 1 
shows the schematic diagram of a 
single metric ruler based locating 
system using the phase method, 
which calculates the location of the 
PIM source by multiplying half of 
the wavelength by the ratio obtained 
from dividing 2π by the measured 
phase. Based on such a metric 
ruler, the maximum measurement 
distance is limited to half of the sig‑
nal wavelength. Although one can 
lower the signal frequency to in‑
crease the maximum measurement 
distance, the position accuracy 
will decrease.

To achieve both a long measurement distance and high po‑
sitioning accuracy, we have developed a novel method called 
FF-MRR. In our proposed method, three fractional frequen‑
cies are employed to build multiple metric rulers with differ‑
ent measurement ranges. The metric ruler based on the lowest 
frequency is to obtain the maximum measurement range while 
the metric ruler based on the highest frequency is to increase 
the positioning accuracy. The metric ruler based on the 
middle frequency  is designed to eliminate  the periodic ambi‑
guity of phases. In this study, we call them the long ruler, fine 
ruler, and short ruler.

Fig. 2 illustrates the proposed FF-MRR system and its com‑
ponents for locating the PIM source. In the system, a frac‑
tional frequency generator is employed to generate signals op‑
erating at specific frequencies. During the positioning process, 
the fractional signal is modulated onto the first channel signal, 
which will carry the useful message. After passing through the 
filter and being amplified by the power amplifier, the signal is 
combined with the amplified signal from the second channel 
by the combiner to form a double-tone signal. To obtain the 
reference PIM signal and the real PIM signal from the RF 
cable, a forward coupler and a backward coupler are inserted 
between the combiner and the RF cable. The forward coupler 
extracts a small amount of power from the double-tone signals 
to generate a reference PIM signal by a passive mixer. The 
backward coupler captures the PIM signals generated by the 
RF cable. For both the reference and real PIM signals, a down-
converter is utilized to lower the frequency of the PIM signals 
so that we can apply a low-rate analog-to-digital converter 
(ADC) to collect the PIM signals. Such a design does not di‑
rectly sample the PIM signals at very high frequencies, 
thereby reducing the cost and complexity of the positioning 
system. After ADC captures the real PIM signals and the refer‑
ence, MCU will perform the program to extract the phase of 
the PIM signal operating at the fractional frequency. For each 
fractional frequency, the system performs the phase detection 
for the PIM signal.

Figure 1. Schematic block diagram of a single ruler locating system

The processor calcu‑lates the distance ac‑cording to the phase difference

Generate ranging signal
Transmitting signal to DUT

The signal is reflected when it means DUT

Receive the reflected signal from DUT

Get the phase of the signals from the signal generator and the sig‑nal receiving unit, which make the difference

Differential frequency phase detection Signal generator

Signal receiving unitSignal receiving unit

Signal transmitting unit
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3 PIM Location with FF-MRR

3.1 Range Distance Based on Phase Differences
Assume that the frequencies of double-tone signals passing 

through the combination of two channels are f1 and f2, and 
their initial phases are φ1 and φ2, respectively. Moreover, the 
measured distance of the double-tone signals D1 can be ob‑
tained by fS + fs:

D1 = c
2f1

φ12π = c
2f2

φ22π (1),

where c is the velocity of the electromagnetic wave. From Eq. 
(1), φ1 = 4f1πD1

c  and φ2 = 4f2πD1
c  can be acquired. The 

third-order intermodulation signal is generated by the two sig‑
nals with f1 and f2, whose frequency fs is assumed as fs = 2f1 -
f2 with the initial phase φs = 2φa - φb. Similarly, the mea‑
sured distance of the generated third-order intermodulation 
signal D2 with the frequency fs is formulated as:

D2 = c
2fs

φs2π = c
2 ( )2f1 - f2

2φ1 - φ22π (2).

By substituting φ1 = 4f1πD1
c  and φ2 = 4f2πD1

c  into Eq. (2), 
it can be reformulated as:

D2 = c
2 ( )2f1 - f2

4πD1
c

( )2f1 - f22π = D1 (3).

Eqs. (2) and (3) show that the 
measured distance depends on the 
phase differences caused by the 
transmission path.
3.2 Range Distance with FF-

MRR
To locate the positions of the PIM 

sources, the phase difference from 
the third-order intermodulation sig‑
nal caused by the transmission path 
should be first obtained. The re‑
ferred PIM signal fIM3 generated by 
the double-tone signal with f1 and f2 is output from the forward coupler, 
which can be formulated as:

fIM3 = AIM3 cos [ 2π(2f1 - f2 -
2f0 )t + (2φ1 - φ2 - 2φ0 ) ] (4),

where AIM3 is the amplitude of the 
referred PIM signal, and f0 and φ0 are the frequency and initial phase 
of the ruler control signal.

The double-tone signals are input into the cable to be tested 
and transmitted to the position of the PIM source within Δt. 
Then, the double-tone signal undergoes nonlinear intermodula‑
tion, resulting in an intermodulation signal with the same fre‑
quency as the referred third-order intermodulation signal fIM3. With the phase differences caused by the transmission path, 
the reflected intermodulation signal f 'IM3 at the input port is re‑
ceived, which can be obtained by:

f 'IM3 = AIM3 cos [ 2π(2f1 - f2 - 2f0 )t +
2(φ1 - φ0 ) - φ2 + 2 ⋅ 2π(2f1 - f2 - 2f0 )Δt ] (5).
The phase differences φIM3 caused by the transmission path 

can be obtained by:
φIM3 = 2π(2f1 - f2 - 2f0 ) (2Δt) (6).
Based on the measured phase discrimination accuracy of 

1°, the ranges of wavelengths of the long ruler, fine ruler, and 
short ruler are 200 m ≤ λL ≤ 360 m, 2 m ≤ λF ≤ 36 m, and 
0.2 m ≤ λS ≤ 3.6 m, respectively. Correspondingly, the ranges 
of frequencies of the long ruler, fine ruler, and short ruler are 
0.42 MHz ≤ fL ≤ 1.5 MHz, 4.2 MHz ≤ fF ≤ 150 MHz and 
42 MHz ≤ fS ≤ 1500 MHz, respectively. From the long ruler, 
the coarse distance DL can be obtained by:

DL = c
φL4πfL

(7),

where φL = φIM3 is measured by MCU in Fig. 2. From the fine 

Figure 2. Block diagram of the FF-MRR system to locate PIM source. 1: local oscillator with flo, 2: frac⁃
tional frequency control signal with f0, 3: the first signal source at f1, 4: the second signal source at f2, 5: 
modulator, 6: filter, 7 and 8: power amplifiers, 9: combiner, 10: forward coupler, 11: backward cou⁃
pler, 12: passive mixer, 13: low noise amplifier, 14 and 15: filters, 16 and 17: down converters, 18 and 
19: low pass filters, 20 and 21: analog-to-digital converters, 22: PIM source, 23: RF cable, 24: matching 

load, and 25: MCU

ADC: analog-to-digital converter         MCU: microcontroller
25
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ruler, the relative accurate range distance DF can be obtained by:
ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

DF = c
φF + 2πKF4πfF

 KF = é

ë
êêêê

ù

û
úúúú

DL - cφF 4πfF

λF int

(8),

where φF is measured by MCU in Fig. 2, KF is an integer from 
the fine ruler, and [ ]int is the integer operator. More accu‑
rately, from the short ruler, the precise range distance DS can 
be obtained by:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

DS = c
φS + 2πKS4πfS

KS = é

ë
êêêê

ù

û
úúúú

DF - cφS 4πfS

λS int

(9),

where φS is also measured by MCU in Fig. 2, and KS is an inte‑
ger from the short ruler. Finally, the final measured distance 
of the PIM source DIM3 can be obtained from the most precise 
range distance, which can be formulated as

DIM3 = DS (10).

4 Simulation Results of PIM Location

4.1 Simulation Setup
The specific simulation conditions are set as shown in 

Tables 1 and 2.
According to the project requirements, the specified trans‑

mission frequency band ranges from 1 805 MHz to 1 880 MHz. 
Consequently, the setup of f1 and f2 has adopted two frequencies 
in the transmission band, namely 1 820 MHz and 1 880 MHz. 
In fact, this system is basically not limited by the frequency 
band and bandwidth. By adjusting the local oscillator signal flo, this system can be adaptable to frequency bands and band‑
widths under various conditions. The positioning accuracy of 
PIM through FF-MMR depends on the highest fractional fre‑
quency in the fractional frequency based multi-range rulers. 
By adjusting the fractional frequency control signal with f0, it 

is easy to reach the fractional frequency up to 200 MHz or 
even higher. Therefore, a conservative setup of 200 MHz is ad‑
opted for fs here. f0 is calculated based on the configured val‑
ues of f1, f2, and fs. The main function of the local oscillator sig‑
nal flo is to down-convert the reference signal and the actual 
PIM signal so that we can use a lower rate ADC to collect PIM 
signals. The project requires a receiver sampling rate of 92.16 
MHz. To make the sampling frequency close to 10 times the 
signal frequency, the local oscillator signal flo is set to 190 
MHz, so that the signal at the receiving end can be reduced to 
10 MHz. The local oscillator signal flo can be changed as 
needed based on actual requirements. Commonly seen on the 
market, the dielectric constant of radio frequency coaxial lines 
with foamed polyethylene (PE) as the dielectric layer is ap‑
proximately between 1.4 and 2.0, while the ones with PE as 
the dielectric layer have a dielectric constant of around 2.3. 
Here, the relative dielectric constant of the cable is set to 2. 
For high-frequency signal transmissions, the signal-to-noise 
ratio usually needs to reach 15 dB or above. Here, a relatively 
poor communication environment (the SNR is assumed as 10 
dB) has been chosen for simulation. Existing phase detection 
technologies generally can achieve phase detection accuracy 
in the millidegree range or higher. Here, a relatively conserva‑
tive configuration of 1 degree is adopted for the phase detec‑
tion accuracy.
4.2 Numerical Results

Table 3 shows the range distances for the PIM source by 
FF-MRR considering the highest fraction frequency fS. Gener‑
ally, the distances of PIM sources range from 0.1 m to 20 m. 
The columns “Error #1” to “Error #5” represent the average 
of ten independent and repeatable trials. A total of 14 distance 
ranging cases from PIM sources is conducted using FF-MRR, 
and an average ranging error of 0.490 mm is obtained, which 

Table 1. Setup of frequency-related conditions in the simulation

First Signal 
Source f1/MHz

1 820

Second Signal 
Source f2/MHz

1 880

Highest Frac‑
tional Frequen‑

cy fs/MHz
200

Fractional Fre‑
quency Control 
Signal f0/MHz

780

Local Oscilla‑
tor Signal 

flo/MHz
190

Table 2. Setup of other conditions in the simulation
Relative Dielectric Con‑

stant of Cable
2

Signal-to-Noise Ratio/dB
10

Phase Discrimination 
Accuracy/(°)

1

Table 3. Simulation ranging error of 200 MHz ruler signal under differ⁃
ent distances to be measured

Distance/m
20
18
16
14
12
10
7
5
3
1

0.7
0.5
0.3
0.1

Error#1/
mm

0.692
0.467
0.336
0.741
0.300
0.332
0.433
0.280
0.689
0.504
0.259
0.658
0.780
0.174

Error#2/
mm

0.795
0.557
0.336
0.719
0.519
0.575
0.357
0.280
0.737
0.262
0.259
0.710
0.693
0.399

Error#3/
mm

0.751
0.287
0.236
0.732
0.339
0.413
0.509
0.508
0.737
0.357
0.450
0.710
0.564
0.286

Error#4/
mm

0.780
0.287
0.336
0.727
0.191
0.494
0.509
0.166
0.717
0.452
0.641
0.658
0.607
0.174

Error#5/
mm

0.721
0.467
0.236
0.732
0.300
0.332
0.585
0.166
0.746
0.357
0.641
0.658
0.607
0.286

Average 
Error/mm
0.747 8
0.413 0
0.296 0
0.730 2
0.329 8
0.429 2
0.478 6
0.280 0
0.735 2
0.386 4
0.450 0
0.678 8
0.650 5
0.263 8
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is less than 1 mm. Furthermore, Table 4 provides a compara‑
tive analysis of the positioning accuracy of various technologies 
used for locating PIM sources. The proposed FF-MRR method 
achieves a positioning accuracy of approximately 1 mm, outper‑
forming near-field scanning (10 mm), acoustic vibration (10 mm), 
K-space (37.5 mm) and ESM (5 mm). Consequently, the favor‑
able errors of range distances indicate the precise location of 
PIM sources can be achieved by FF-MRR compared with the 
other positioning technologies.
4.3 Errors Analysis

Moreover, the SNR and transmission velocity from filters, 
mixers and other components affecting the positioning error‑
should be analyzed in the real measured environment.

Firstly, noise interference is considered in the positioning 
error, which is referred to as random Gaussian white noise. 
Fig. 3 shows the positioning error obtained by FF-MRR var‑
ies with the increased SNR. The maximum fractional frequen‑
cies of signals are considered as 7.5 MHz, 15 MHz, 30 MHz, 
50 MHz, 100 MHz, 150 MHz and 200 MHz with the initial 
phase of 60 degrees. Additionally, the sampling frequency is 
500 MHz. It can be found that a lower frequency results in a 
higher ranging error, because the ranging error is determined 
by the signal wavelength and the accuracy of the identifica‑
tion phase. When the accuracy of the identification phase re‑
mains unchanged, the longer the wavelength of the ranging 
signal, the greater the range error. Generally, as the SNR in‑
creases, the ranging errors decrease. The ranging error is de‑
clined to approximate 0.01 wavelengths when the SNR ex‑
ceeds 10 dB with the frequency of ranging signal higher than 
50 MHz.

Besides, the relative dielectric constant of transmission line 
can alter the velocity of electromagnetic wave, thereby influenc‑
ing the ranging accuracy. Fig. 4 illustrates that the range errors 
vary with the relative dielectric constant of the transmission 
line. As the relative dielectric constant increases, the velocity 
of the electromagnetic wave decreases and the wavelength de‑
clines. Eventually, the ranging errors are reduced as well.
5 Conclusions

In this paper, an FF-MRR method is proposed to locate the 
PIM sources in cables. In the FF-MRR method, fractional fre‑
quency signals across multiple ranges can be obtained. Higher 
frequencies enable high-positioning accuracy, while lower fre‑

quencies facilitate long range detection. Systematic simulations 
verify that the FF-MMR method has the advantage of high accu‑

Table 4. Comparison of various PIM locating technologies
PIM Locating Technology

The near-field scanning[1, 12]

Acoustic vibration[1, 9]

K-space muti-carrier signals[10]

Emission source microsopy[8]

Our work

Scenario
Microstrip line

Antenna
Cables
PCB

Cables

Distance/m
0.21
–

2.437
0.7
20

Working Frequency/MHz
935–960

1 850–1 990
1 125–1 175
1 932–1 985
1 805–1 880

Error/mm
10
10

37.5
5

0.519
PCB: printed circuit board           PIM: passive intermoludation

Figure 3. Positioning error versus SNR

SNR: signal-to-noise ratio

Figure 4. Influence of the relative dielectric constant of the RF cable on 
the positioning error at different fractional frequencies
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racy. When the highest frequency is 200 MHz, the positioning 
accuracy can reach the millimeter level. Meanwhile, it only re‑
quires flexible adjustment of the wavelengths of the ruler signal 
to locate PIM sources with FF-MRR, which just needs a few 
seconds in the whole locating process, highlighting the high effi‑
ciency advantage of the method. In addition, the PIM source lo‑
cation approach using the FF-MRR method and the proposed 
system diagram enploys a lower rate ADC without requiring 
other expensive instruments like scanning probes in near-field 
scanning methods. Therefore, this method also has the merits of 
lower cost and ease of portability. This method significantly im‑
proves the positioning performance in the PIM location technol‑
ogy for cable test scenarios compared with other methods. Nev‑
ertheless, the applicability of this method is somewhat re‑
stricted. It cannot be used in test scenarios involving antennas, 
printed circuit boards （PCBs）, and the like.
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1 Introduction

With the development of 6G, the integrated sensing 
and communication (ISAC) process is accelerat‑
ing. An essential scenario for ISAC is the low-
altitude environment, which includes specific use 

cases such as trunking communication and ad-hoc networks. 
Research on channel modeling for ISAC is now under lively 
discussion. However, the topic is mainly on the intelligent con‑
nected vehicles[1], and channel modeling for the low-altitude 
scenario with unmanned aerial vehicles (UAVs) as protago‑
nists still needs to be further explored. The communications, 
sensing, and computing resources will be deeply integrated 
and mutually beneficial, providing efficient services for new 
intelligent applications such as intelligent transportation, 
UAV networks, space-air-ground-sea integrated networks, en‑
vironmental detection, and metaverse[2–3]. The application po‑
tential of the low-altitude scenario is significant, as networks 
of UAVs can be used as sensor platforms to enable remote lo‑
cation coverage in emergencies like network impairment. Al‑
ternatively, UAVs can be used as low-cost infrastructure to 
provide traffic offload in crowded areas like stadiums[4]. More‑

over, applying UAV networks to high-speed railways, espe‑
cially in high-altitude unmanned areas, will effectively reduce 
maintenance costs. Due to their high mobility and low cost, 
UAVs play an increasingly significant role in many practical 
applications, including weather monitoring, forest fire detec‑
tion, and emergency search and rescue[5]. By building a collab‑
orative network architecture with multiple air base stations, it 
is possible to achieve multi-service, multi-access, multi-level 
coverage for post-disaster scenarios[6]. Besides, UAVs are ex‑
pected to serve as an efficient complementary to terrestrial 
wireless communication systems to provide enhanced cover‑
age and reliable connectivity to ground users[7]. UAVs facili‑
tate more advanced technologies, such as federal learning[8], 
reconfigurable intelligent surface[9], and the Internet of 
Things[10]. Mobile edge computing (MEC) has developed into a 
promising computing paradigm. UAVs are practical in MEC 
since federated learning can improve the performance of UAV 
computing networks[11]. While there are ample application 
prospects and advantages, UAVs face significant challenges. 
Due to the high mobility, the requirements for dynamic chan‑
nel modeling are demanding[12]. The channel status changes 
rapidly and should be updated frequently. Therefore, conduct‑
ing the underlying theory and critical technology study for the 
UAV channels is of great importance and value.This work was supported by ZTE Industry ⁃University ⁃ Institute Coopera⁃

tion Funds under Grant No. HC-CN-20220622006.
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More research efforts have been put into current UAV 
channel modeling. Ref. [13] performs a channel replication 
of a 1 420 MHz air-to-air link using ray tracing and tapped-
delay line models to describe the communication channel. 
The low detectability of radar targets is crucial for stealth. To 
avoid being detected by radar, the reduction technology of 
radar-cross-section (RCS) has become one of the research 
hotspots[14]. Currently, there is some literature on RCS mea‑
surement and analysis of UAVs. Most studies are mainly fo‑
cused on the X-band (8–12 GHz) radars and even lower fre‑
quency bands. Ref. [15] discusses the relationship between 
RCS and the UAV flight range through dynamic measure‑
ments by a radar demonstrator system at 8.75 GHz. Ref. [16] 
presents the results of the measurement and analysis of sev‑
eral UAV RCS in different planes and from different eleva‑
tion angles at 9 GHz. Ref. [17] describes the measurement 
and modeling of the dynamic RCS at 8–10 GHz and com‑
pares the difference between the probability of detection us‑
ing dynamic and static RCSes. Due to the development of 
wireless communication frequency bands towards higher fre‑
quencies such as millimeter-wave, terahertz, and visible light 
bands, there will be more and more overlap with traditional 
sensing frequency bands. Besides, there is a lack of data sup‑
port for sensory characteristics in the typical ISAC frequency 
band. RCS-based measurements at 15 GHz and 25 GHz are 
used for UAV recognition and detection in Refs. [18] and [19]. 
Diverse UAV detection and classification methods based on 
the RCS signatures are analyzed at 26–40 GHz[20–21]. How‑
ever, accurate data on the UAVs for the ISAC frequency band 
is far from enough. It is worth noting that the structure and ma‑
terials of the UAVs are different. Thus, the RCS values cannot 
be represented by a unified model. In addition, considering 
the variable attitude of the UAVs during flight and the unfixed 
relative positions between the UAVs and the base stations, 
conducting RCS measurements in practical scenarios is also 
challenging. Therefore, conducting multiple measurements 
and analyzing RCS values for different propeller states and atti‑
tudes while the UAV is stationary may be the most feasible ap‑
proach. Channel models for communication functions can pro‑
vide large- and small-scale channel parameters, while the con‑
tribution to  sensing is weak. The sensing feature needs to be 
modeled accurately since the sensing function is considered a 
fundamental function of 6G networks. Collaborative perception 
can be achieved by deploying multiple UAVs[22]. From the exist‑
ing literature, changes in the UAV structures have not attracted 
much attention. During the flight, the propeller states and atti‑
tudes are variable, which is also crucial for sensing. Therefore, 
accurate RCS data for the UAV structure changes at the key fre‑
quency band for communication sensing, i.e., 21–26 GHz, are 
essential and need to be further supplemented.

In response to the abovementioned demands and chal‑
lenges, measurements are carried out for a typical UAV in this 
paper. Multi-angle bistatic measurements are conducted at dif‑

ferent flight attitudes of 21 – 26 GHz. Accurate multi-angle 
RCSs are obtained after calibration and statistical analyses 
were performed. This study provides a data basis for the UAV 
application of ISAC and complements the missing measure‑
ment data of multiple attitudes and angles of UAVs in this fre‑
quency range. Besides, this work will contribute to the devel‑
opment of accurate ray-tracing simulation models for UAV 
scenarios[23–24], providing essential data support for ISAC 
channel standardization. The main contributions and novelties 
of this paper are as follows.

• An RCS measurement system is built based on a vector net‑
work analyzer (VNA) and a rotary table, which can measure the 
RCS and maximum received power of the UAV at any angle;

• The measurement data of RCS for quadcopter drones in 
the 21–26 GHz frequency band are filled;

• The RCS of the UAV in different flight attitudes, propel‑
ler states, and angles between the transmitting and receiving 
antennas are measured, and the effects are compared.

The rest of this paper is organized as follows. Section 2 de‑
scribes the RCS measurement system and layouts. The mea‑
surement results are introduced in Section 3, including the ref‑
erence data, maximum received power, and RCS. Conclusions 
are drawn in Section 4.
2 Measurement Campaign

2.1 Measurement System
The RCS measurement of a UAV is carried out in an an‑

echoic chamber to reduce the interference of external electro‑
magnetic wave signals. At the same time, the absorbing materi‑
als reduce the multipath effects caused by the reflection of 
walls and ceilings. The measurement system consists of a VNA, 
a rotary table, two identical directional antennas, two tripods, 
and a quadcopter UAV, as shown in Fig. 1. The rotary table is 
made of low-density foam material, and its influence on electro‑
magnetic wave propagation can be ignored. The UAV is placed 
on the rotary table and rotates synchronously with it.

Figure 1. Proposed measurement system
UAV: unmanned aerial vehicle      VNA: vector network analyzer

Antenna

UAV

VNA
Rotary table

Tripod
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The measurements are conducted at 
the center frequency of 23.5 GHz with 
a 5 GHz bandwidth. The frequency 
sampling number is 201, which indi‑
cates a frequency sampling resolution 
of 25 MHz. The gain of both directional 
antennas is 24.7 dBi to enhance the re‑
ceived signal strength. During the mea‑
surement process, the transceiver an‑
tenna is fixed on a tripod, and the UAV 
is placed on the rotary table to maintain 
the same antenna height. The heights of 
the Tx and the Rx from the ground are 
both 1.3 m, as well as the height of the 
UAV. The antennas and the UAV are at 
the same level to ensure that the an‑
tenna beams can cover the UAV. The 
rotary table is rotated at an interval of 
5° during the measurements in order to 
measure the RCS at different angles as 
much as possible. The angles between 
the Tx and Rx are considered to be 10° and 45° . This is for 
comparing the RCS differences under different angles. More 
detailed measurement parameters are listed in Table 1.
2.2 UAV and Antenna Layouts

The UAV in the measurement is Phantom 3 Standard, 
which is one of the common camera drones. The diagonal size 
(propellers excluded) is 0.35 m. The length and width of the 
UAV are 0.25 m, and the height is 0.19 m.

Due to the difficulty of hovering the UAV, static measure‑
ments are carried out. To obtain the reflection and scattering 
characteristics of the various attitudes of the UAV, the fuse‑
lage states of leveling and tilting are considered. Besides, the 
propeller states of vertical and parallel to the aircraft axis are 
also considered. Thus, there are four types of UAV attitudes  
in the measurements in total, which are shown in Fig. 2a. Fig. 
2b shows the positional relationship between the antennas and 
the UAV. All cases are summarized in Table 2. The distance 
between Tx and the UAV is 1.8 m. The distance between the 
UAV and Rx is 1.8 m. The diameters of the aircraft axes are 

0.03 m. The measurement meets the far-field conditions, ac‑
cording to the following equation:

df = 2D2 λ (1),
where df is the distance of the Fraunhofer region, D is the maxi‑
mum linear dimension of the antenna, and λ is the wavelength. 
3 Measurement Results

3.1 Reference Data
To obtain accurate antenna gains, measurements are con‑

ducted under line of sight (LoS) conditions. Besides, the case 
without placing the UAV is measured to provide a reference. 
The distance between the Tx and Rx is 3.6 m, which is twice 
the distance from the Tx or Rx to the UAV in the RCS mea‑
surements. Moreover, the power delay profiles (PDPs) with 
and without the UAV are compared, which is shown in Fig. 3.

Fig. 3 shows that the delays corresponding to the strongest 
power are the same in all cases. The power is the highest at 

Table 1. Measurement configuration
Measurement Parameters

Center frequency
Bandwidth

Frequency samples
Rotation angle interval

Tx and Rx heights from the ground
UAV height from the ground

Antenna gain
Angle between Tx and Rx

Values

23.5 GHz
5.0 GHz

201.0
5.0°

1.3 m
1.3 m

24.7 dBi
10.0°/45.0°

UAV: unmanned aerial vehicle

Figure 2.  Layout of the antennas and the UAV:(a) attitudes of the UAV and (b) the positional rela⁃
tionship between the antennas and the UAV

UAV: unmanned aerial vehicle

Table 2. Measurement cases

Case

1
2
3
4
5
6
7
8

UAV States

Leveling
Leveling
Tilting
Tilting

Leveling
Leveling
Tilting
Tilting

Propeller States to Air⁃
craft Axis

Parallel
Vertical
Parallel
Vertical
Parallel
Vertical
Parallel
Vertical

Angle Between 
Tx and Rx

10°

45°

UAV: unmanned aerial vehicle

(a) (b)
UAV: unmanned aerial vehicle

Leveling+parallel Leveling+Vertical

Tilting+verticalTilting+parallel

Leveling+Vertical

Propeller Aircraft axisAircraft axis UAV

1.8 m1.8 m

Tx Rx

10°

UAV
1.8 m1.8 m

Tx Rx45°
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the LoS and the lowest when there is no UAV placed, which 
indicates that the absorbing materials are very effective. Since 
Tx and Rx are the same, the antenna gain GAnt can be calcu‑
lated by:

GAnt = (Pmax + FSPL23.5 GHz, 3.6 m )/2 (2),
where Pmax denotes the maximum power of the PDP and 
FSPL23.5 GHz, 3.6 m  denotes the free space path loss at 3.6 m at 
the frequency of 23.5 GHz.
3.2 Maximum Received Power

The maximum power at each measurement angle is ana‑
lyzed before RCS, which can help us gain a preliminary under‑
standing of the reflection characteristics of the UAV at differ‑
ent angles. For each attitude of the UAV at two angles, the 
measurements are conducted every 5° of the rotation of the ro‑
tary table, and thus 72 measurement results are obtained. The 
values of the maximum power are found from all measured 
angles. The radar charts are shown in Fig. 4, where the maxi‑
mum power is higher at the four measured angles of 0° , 90° , 
180° , and 270° , which is mainly caused by the reflection of 
the battery module below the UAV. The power at the same 

measurement angle varies slightly at 
different attitudes. In addition, the 
maximum power of Tx and Rx at the 
angle of 10° is generally higher than 
that at the angle of 45°.
3.3 RCS

The radar acquires the target infor‑
mation by processing the echo data. 
Therefore, the design and operation of 
radars are critical to quantify and de‑
scribe the echo, especially in terms of 
target characteristics such as the size, 
shape, and orientation. For that pur‑
pose, the target is ascribed to an effec‑
tive area called the RCS[25]. The RCS of 
the target is the ratio of the power scat‑
tered back to the radar receiver over 
the incident radar power density per 
unit of solid angles on the target, which 
is expressed as follows[26]:

σ = Pr (4π)3d2
t d2

r

PtGtGr λ
2  (3),

where σ represents the RCS, Pt and Pr represent the transmitted power and re‑
ceived power, dt and dr represent the 
distance from the target to Tx and Rx, 
and Gt and Gr represent the gain of Tx 
and Rx. Fig. 5 shows the RCS results 

and cumulative distribution function (CDF) at each measured 
angle in the cases of two different angles between Tx and Rx. 
All the results are summarized in Table 3.

1) Case 1
When the angle between the Tx and Rx is 10°, the UAV is 

leveling, and the propellers are parallel to the aircraft axis. 
The maximum value of RCS is obtained at 0° of the rotation in 
this condition, where the UAV faces the antennas. The battery 
module below the UAV generates a strong echo. The CDF 
shows that the mean value of the RCS in this case is about 
−31.68 dBsm.

2) Case 2
When propellers are vertical to the aircraft axis, the maxi‑

mum value of RCS is also obtained at 0° of the rotation. Com‑
pared with the previous UAV attitude scenario, values of the 
RCS are slightly different from those at the measured angles of 
0°, 90°, 180°, and 270°. However, there are significant differ‑
ences in other measured angles. Because, at those angles, the 
propellers are in the lobes of the Tx and Rx, significantly im‑
pacting the echo. From the CDF, the mean value of RCS in 
this case is also about −31.63 dBsm.

3) Case 3

Figure 3. PDP comparison of the LoS and w/o the UAV at the Tx-Rx angle of (a) 10° and (b) 45°

LoS: line of sight      UAV: unmanned aerial vehicle
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(b)
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When the angle between the Tx and Rx is still 10°, the UAV 
changes to tilt, and the propellers are parallel to the aircraft 
axis. Like the previous ones, the maximum value of the RCS is 
also obtained at 0°, indicating that the reflecting surface on the 
top of the UAV still plays a crucial role. However, this value 

significantly decreases as the size of the 
reflection surface in this case is smaller 
than that of the leveling ones. Besides, 
the values of the RCS fluctuate more 
sharply at other measured angles be‑
cause of the UAV structure. Significant 
differences in the structure of the UAV 
at different angles lead to rapid changes 
in the size and shape of the reflecting 
surfaces. The mean value of the RCS in 
this case is about −33.27 dBsm.

4) Case 4
As for the case of the propellers be‑

ing vertical to the aircraft axis, the 
maximum value of RCS is obtained at 
the measured angle of 90°. The rotation 
of the propellers affects the size of the 
reflecting surface. Compared with the 
case where the UAV is leveling and the 
propellers are vertical, the value of the 
RCS significantly decreases at 0° . 
Meanwhile, the values fluctuate more 
sharply at other measurement angles for 
the same reason as the previous one. 
The mean value of the RCS is about 
−32.85 dBsm according to the CDF.

5) Case 5
Fig. 5b shows the results of the RCS 

when the angle between the Tx and Rx is 45°. The maximum 
value of RCS is obtained at 0° while the UAV is leveling and 
the propellers are parallel to the aircraft axis. The RCS values 
at most measured angles slightly increase compared with 
those at 10°, given the same attitude, indicating that the reflec‑
tion area is larger at this angle. The mean value of the RCS of 
the UAV in this case is about −32.09 dBsm.

6) Case 6
A similar situation occurs when the UAV is tilting and the 

propellers are vertical to the aircraft axis. The maximum value 
of the RCS is also obtained at 0°. Moreover, the mean value of 
the RCS is −32.36 dBsm.

7) Case 7
When the angle between the Tx and Rx is 45° , the UAV 

tilts and the propellers are parallel to the aircraft axis, and 
the maximum value of the RCS is also obtained at 0° . Be‑
sides, the values of the RCS show little change in most mea‑
sured angles. The values of the RCS are mainly smaller 
than the case of the UAV leveling and the propellers are 
parallel to the aircraft axis in most measured angles be‑
cause of the significant impact on the reflection surface. Ac‑
cording to the CDF, the mean value of the RCS in this case 
is about −34.02 dBsm.

8) Case 8
As the UAV is tilting and the propellers are vertical to 

Table 3. RCS measurement results

Case

1

2

3

4

5

6

7

8

RCS

Maximum Value/dBsm
(Corresponding Angle)

−19.01 (0°)

−19.40 (0°)

−25.12 (350°)

−24.72 (100°)

−20.78 (0°)

−21.78 (0°)

−24.71 (355°)

−24.59 (100°)

Minimum Value/dBsm
(Corresponding Angle)

−38.81 (225°)

−36.53 (45°)

−40.87 (215°)

−39.50 (290°)

−40.33 (45°)

−36.95 (255°)

−42.93 (240°)

−47.95 (65°)

Mean Value/
dBsm

−31.68 

−31.63 

−33.27 

−32.85 

−32.09 

−32.36 

−34.02 

−34.63 
RCS: radar-cross-section

Figure 4. Maximum power at different attitudes at the Tx-Rx angles of (a) 10° and (b) 45°
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the aircraft axis, the maximum value of RCS is obtained at 
90° , same with the situation when the angle between the Tx 
and Rx is 10°. However, the values of RCS show little differ‑
ence from the situation where the angle between the Tx and 
Rx is 10° in most measured angles. Compared with the case of 
the UAV leveling and the propellers being vertical to the air‑
craft axis at the same angle between the Tx and Rx, most val‑
ues of the RCS decrease as the tilt of the UAV at this angle 
causes a more significant impact on the reflection surface. Fur‑
thermore, the mean value of the RCS of the UAV is about 
−34.63 dBsm in this case.

4 Conclusions
In this paper, the UAV RCS measurements are conducted 

based on the VNA. The UAV is measured in all directions by 
using the rotary table. The angles between the Tx and Rx in‑
clude 10° and 45° . Four types of UAV attitudes are consid‑
ered for a comprehensive analysis. The UAV is leveling and 
tilting, and the propellers are parallel and vertical to the air‑
craft axis.

As for the measurement results, the maximum received 
power and the RCS are analyzed. For complex targets like 
UAVs, there is no fixed calculation relationship between their 
fuselage structure and RCS. It is found that the maximum 

Figure 5. RCS of the UAV at different attitudes at the Tx-Rx angles of (a) 10° and (b) 45°
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power is mainly affected by the reflection of the main part of the 
UAV rather than the attitudes. The power at the same measure‑
ment angle varies slightly at different attitudes. The angle be‑
tween the Tx and Rx can also influence the results, with a 
smaller angle resulting in a higher maximum power. The maxi‑
mum value of the RCS is mostly measured at around 0°, except 
for the case where the UAV is tilting and the propellers are ver‑
tical to the aircraft axis, which is obtained at 100° . The mean 
values of the RCS in different cases are between −31 dBsm and 
−35 dBsm. As the angle between the Tx and Rx increases, the 
values of RCS generally decrease. In addition, the attitude 
change will significantly impact the changes in the values of the 
RCS at different measured angles.

This paper provides reference data at the millimeter wave 
band for studying the ISAC channel of UAVs. The flight status 
of UAVs may be determined by constantly detecting RCS val‑
ues. In addition, the results of this paper can also be used as 
data references for the ray-tracing simulation of UAVs[27]. Us‑
ing the same method, more comprehensive measurements of 
multiple types of unmanned aerial vehicles, multiple fre‑
quency bands, and multiple flight attitudes can be conducted. 
The RCS models of different UAVs at different attitudes and 
incident angles can be explored in the future.
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Abstract: Orthogonal time frequency space (OTFS) can resist the Doppler effect and guarantee reliable communication in high-speed sce‑
narios. However, the Doppler rate induced by the relative acceleration between the transmitter and receiver degrades the performance of the 
OTFS. So far, the impact of the Doppler rate on OTFS systems has not been addressed. In this paper, we first introduce the Doppler rate in the 
OTFS system and derive the delay-Doppler domain input-output relation. In addition, the impact of the Doppler rate on the effective delay-
Doppler domain channel is characterized by utilizing the first mean value theorem for definite integrals to avoid complicated integrals. To 
mitigate the effect of the Doppler rate, a large-scale antenna array is arranged at the receiver to separate each path of the multi-path channel 
through a high-resolution spatial matched filter beamformer. Next, the Doppler rate estimation scheme for an arbitrary order Doppler rate is 
proposed based on the successive interference cancellation pattern and the maximization of the spectrum of the ratio of high-order moments 
between the received samples in the identified branch and the transmitted samples. Finally, the estimation accuracy of the Doppler rate and 
the error performance of the proposed transceiver are validated by the numerical results.
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1 Introduction

Orthogonal time frequency space (OTFS) modulation 
has been proposed to overcome the high Doppler ef‑
fect[1–2]. Specifically, the information-bearing sym‑
bols are modulated in the delay-Doppler domain 

rather than the time-frequency domain of the orthogonal fre‑
quency division multiplexing. Each symbol in the delay-
Doppler domain is transformed into the whole time-frequency 
domain by the two-dimensional inverse symplectic finite Fou‑
rier transform (ISFFT), which enables the OTFS to harness the 
full diversity[3]. The delay-Doppler domain captures the physi‑
cal characteristics including the delay shifts and the Doppler 
shifts of the channel, which enables the sparsity of the chan‑
nel[4]. The maximum delay and the maximum Doppler shift are 
within the corresponding range of the delay-Doppler domain. 

Therefore, the delay-Doppler domain channel is underspread 
and quasi-stationary. The sparse and relatively quasi-
stationary characteristics in the delay-Doppler domain benefit 
the channel estimation and the data detection tasks for OTFS.

In mobile radio transmission scenarios, such as the radar 
detection, low earth orbit （LEO） satellites, and millimeter-
wave systems, the received signal may experience significant 
time-varying Doppler distortion due to the relative motion be‑
tween the transceivers[5–8]. Then the Doppler rate as a high-
order motion parameter related to the motion acceleration rate 
must be considered in the system model. Thus, the Doppler 
shift is no longer a constant but a variable that changes with 
time. Various methods are adopted to address the Doppler rate 
under different scenarios. To image a ground-moving target 
with a synthetic radar system, the third-order Doppler fre‑
quency mitigation schemes are designed. The coherent inte‑
gration detection schemes based on the Keystone transform 
and even the second-order Keystone transform, and the gener‑
alized Hough-high-order ambiguity function are proposed in 
Refs. [5] and [6], respectively. In Ref. [7], a new fast Doppler 
shift and Doppler rate joint acquisition method derived from 
the spectrum method is proposed for hypersonic vehicle com‑
munications. Based on the sequential importance sampling, 
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the joint estimation of the carrier phase, Doppler shift, Dop‑
pler rate, and data detection using particle filters is proposed 
in Ref. [8]. However, the above-mentioned schemes only con‑
sider the Doppler rate in the scenario where only a single path 
exists and is not always valid in the common communication 
systems. Moreover, to the best of our knowledge, there does 
not exist any open literature that introduces and then ad‑
dresses the Doppler rate effect for OTFS.

In this paper, we first introduce the Doppler rate in the OTFS 
system. The delay-Doppler domain input-output relation is de‑
rived under an arbitrary-order Doppler rate. In addition, the 
Doppler rate effect is characterized by taking advantage of the 
first mean value theorem for definite integrals. Then, the system 
model is proposed by arranging a large-scale antenna array at 
the receiver and a joint frame structure is considered, where the 
first transmission frame is utilized to estimate the Doppler rate 
and then the Doppler rate is compensated in the subsequent 
frames through precoding. Next, the Doppler rate estimation 
and compensation scheme that applies to the system with an 
arbitrary-order Doppler rate and performs in the first frame is 
proposed. Although some studies utilize the angle domain to 
separate scattering paths, the existing literature does not ac‑
count for the Doppler rate effect[9]. The main contributions of 
this paper are summarized as follows:

1) The Doppler rate is first introduced in the OTFS system. 
Based on the introduction of the effect of the Doppler rate, the 
delay-Doppler domain input-output relation is rederived and 
the influence of the Doppler rate is characterized by utilizing 
the first mean value theorem for definite integrals.

2) The receiver scheme is designed with a large-scale an‑
tenna array to estimate the Doppler rate in each identified 
branch. Specifically, the different scattering paths are sepa‑
rated in the angle domain to create the signal path condition to 
simplify the Doppler rate estimation.

3) The Doppler rate mitigation scheme applied to the arbi‑
trary order Doppler rate is proposed by utilizing the maximiza‑
tion of the spectrum of the ratio of high-order moments be‑
tween the received samples in the identified branch and the 
transmitted samples.

The remainder of the paper is organized as follows. Section 
2 introduces the system model. Section 3 introduces the OTFS 
transceiver, followed by the Doppler rate estimation in Section 
4. The simulation results and conclusions are provided in Sec‑
tions 5 and 6, respectively.
2 System Model

We first introduce the Doppler rate effect to the delay-
Doppler domain channel. Then, the generalized delay-Doppler 
domain input-output relation for an OTFS system with the 
arbitrary-order Doppler rate is derived. Finally, the effect of 

the Doppler rate is characterized.
2.1 Channel with Doppler Rate*

The delay-Doppler domain channel with the Doppler rate is 
sparse and is expressed as:

h (τ, ν, t ) = ∑
p = 0

P - 1
βp δ (τ - τp )δ (ν - νp - ∑

q = 1

Q

aq tq ) (1),

where P is the total number of the channel taps; βp and τp are 
the channel coefficient and the delay shift of the p-th path, re‑
spectively; νp = fd cos θp where fd is the maximum Doppler shift 
and θp is the angle of arrival of the p-th path; Q is the highest or‑
der of the Doppler rate and aq is the coefficient of the q-th order 
Doppler rate. The variation of the delay can exist in the high-
speed scenarios as in Ref. [10].
2.2 Input-Output Relation in Delay-Doppler Domain

Without the noise, the delay-Doppler domain input-output re‑
lation can be expressed as:

y [ k,l ] = 1
MN ∑

k' = 0

N - 1 ∑
l' = 0

M - 1
x [ k',l'] hk,l [ k',l'] ,   k ∈ IN, l ∈ IM (2),

where x [ k',l'] and y [ k,l ] are the information-bearing symbols 
and the received symbols in the delay-Doppler domain, respec‑
tively; N and M are the numbers of the samples in the Doppler 
and the delay domain, respectively; IN = [ 0,1,…,N - 1] is de‑
fined as shorthand hereafter to represent an index set; hk,l [ k',l'] 
is the sampled effective delay-Doppler domain channel and can 
be expressed as:

hk,l [ k',l'] =
                           
∑
n = 0

N - 1 ∑
m = 0

M - 1 ∑
m' = 0

M - 1
Hn,m [ n,m'] e

- j2πn ( k - k'
N )

e
j2π ml - m'l'

M

≜ h (1)
k,l [ k',l']

+

                                 
∑
n = 1

N - 1 ∑
m = 0

M - 1 ∑
m' = 0

M - 1
Hn,m [ n - 1,m'] e

- j2π ( )nk
N - (n - 1)k'

N e
j2π ml - m'l'

M

≜ h (2)
k,l [ k',l']

 (3).

We denote Hn,m [ n',m'] as the sampled time-frequency do‑
main effective channel. With the rectangular pulses considered 
for the transmit and the receive pulse-shaping functions, 
Hn,m [ n', m'] is nonzero when n' = n or n' = n - 1, and 
Hn,m [ n, m'] and Hn,m [ n - 1, m'] are expressed as:

Hn,m [ n,m'] =
∑
p = 0

P - 1 βp

T ∫0
T - τp

e
j2π ( )νp + ∑

q = 1

Q

aq ( t″ + τp + nT ) q ( t″ + nT ) ×
ej2πm'Δft″e- j2πmΔf ( t″ + τp )dt″ (4),

* We pay attention to the time-varying Doppler shift in this manuscript and the effect of the time-varying delay will be addressed in our future work.
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Hn,m [ n - 1,m'] =
∑
p = 0

P - 1 βp

T ∫
T - τp

T

e
j2π ( )νp + ∑

q = 1

Q

aq ( t″ + τp + (n - 1)T ) q ( t″ + (n - 1)T ) ×
ej2πm'Δft″e- j2πmΔf ( t″ + τp )dt″ (5).
We can see from Eqs. (3) – (5) that the calculation of the 

hk,l [ k',l'] involves the integral of the function with the form ∫
a1

b1
et″Q + 1 dt″ , which is difficult to calculate directly.

2.3 Doppler Rate Effect Characterization
To demonstrate the influence of the Doppler rate, the first mean 

value theorem for definite integrals is utilized to avoid the compli‑
cated calculation in Eqs. (4) and (5). We assume that ∃ξ1 ∈ [ 0,T -
τp ] and ∃ξ2 ∈ [ T - τp,T ], and Eqs. (6) and (7) hold.

From Eq. (3), we can further express h (1)
k,l [ k',l'] and 

h (2)
k,l [ k',l'] as:
Hn,m [ n,m'] = ∑

p = 0

P - 1 βp (T - τp )
T ej2πm'Δfξ1 e- j2πmΔf ( ξ1 + τp ) ×

e
j2π ( )νp + ∑

q = 1

Q

aq ( ξ1 + τp + nT ) q ( ξ1 + nT ) (6),

Hn,m [ n - 1,m'] =
∑
p = 0

P - 1 βpτp

T ej2πm'Δfξ2 e- j2πmΔf ( ξ2 + τp ) ×

e
j2π ( )νp + ∑

q = 1

Q

aq ( ξ2 + τp + (n - 1)T ) q ( ξ2 + (n - 1)T ) (7).

h (1)
k,l [ k',l'] = ∑

p = 0

P - 1 βp

T (T -

τp )ej2πνp ξ1 e
j2πM (Δfξ1 - l'

M ) - 1
e

j2π (Δfξ1 - l'
M ) - 1

e
- j2πM (Δf ( ξ1 + τp ) - l

M ) - 1
e

- j2π(Δf ( ξ1 + τp ) - l
M ) - 1

×

∑
n = 0

N - 1
e

j2π ( )( )∑
q = 1

Q

aq ( ξ1 + τp + nT ) q ( ξ1 + nT ) + νpnT - n k - k'
N (8),

h (2)
k,l [ k',l'] = ∑

p = 0

P - 1 βpτp

T ej2πνp ξ2 e
j2πM (Δfξ2 - l'

M ) - 1
e

j2π(Δfξ2 - l'
M ) - 1

×

e
- j2πM (Δf ( ξ2 + τp ) - l

M ) - 1
e

- j2π(Δf ( ξ2 + τp ) - l
M ) - 1

×

∑
n = 1

N - 1
e

j2π ( )( )∑
q = 1

Q

aq ( ξ2 + τp + (n - 1)T ) q ( ξ2 + (n - 1)T ) + νp (n - 1)T - nk
N + (n - 1)k'

N (9).

For an explicit illustration of the Doppler rate effect, we mesh 

the difference of the delay-Doppler domain channel 
ΔHk,l [ k',l'] = |hk,l [ k',l'] - ĥk,l [ k',l'] |2, given the fixed k' = N2  
and l' = M2 , where ĥk,l [ k',l'] is the delay-Doppler domain chan‑
nel without the Doppler rate influence, i.e., aq = 0, ∀q. The val‑
ues of N and M are set as 16 and 32, respectively. As the differ‑
ent values of ξ1 and ξ2 would have little impact on the character‑
ization of the channel, we set ξ1 = T - τmax2 , ξ2 = 2T - τmax2  .

The highest orders of the Doppler rate in Figs. 1 and 2 are 1 
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▲ Figure 1. Difference of the delay-Doppler domain channel matrix ΔHk,l [ k',l'] meshes with the highest order of the Doppler rate Q=1, 
where the values of the a1 in (a), (b), (c), and (d) are set as 49 Hz/s, 

490 Hz/s, 4 900 Hz/s, and 49×108 Hz/s, respectively
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and 2, respectively. We can see that the difference of the delay-
Doppler domain channel becomes larger as the values of the 
Doppler rate increase. Compared with Fig. 1, we can see that 

the variance of the delay-Doppler domain channel is more so‑
phisticated under a higher order of the Doppler rate in Fig. 2. 
Therefore, it is necessary to design a scheme to estimate and 
then compensate the effect of the Doppler rate to guarantee reli‑
able communication in high-speed scenarios.
3 Receiver Design

The joint frame structure is designed, where the time-domain 
linear frequency modulated signal is sent in the first frame to es‑
timate the Doppler rate and then the Doppler rate compensation 
is performed in the subsequent frames by using the Doppler rate 
estimate in the first frame.

The diagram of the proposed scheme in the first frame is dem‑
onstrated in Fig. 3. We consider a downlink high-mobility trans‑
mission scenario where a large-scale antenna array is arranged 
at the receiver. In addition, the value of the arbitrary order of the 
Doppler rate is assumed as a constant in the system model. The 
multi-path channel from the base station to the b-th antenna is 
expressed as:

hb ( t,τ ) = ∑
p = 0

P - 1
βp e

j ( )2π ( )νp + ∑
q = 1

Q

aq tq t + ϕb cos θp

δ (τ - τp ) (10),

where b ∈ IB, and B is the number of the receive antennas. The 
phase of the b-th antenna is expressed as:

ϕb = 1
λ 2πbη,   b ∈ IB (11),

where λ is the carrier wavelength; η < 0.5λ is the antenna dis‑
tance of the uniform linear array (ULA) and is designed to pro‑
duce only one beam in each receiving beamformer.

The received signal of the b-th antenna is expressed as:

rb ( t ) = ∑
p = 0

P - 1
βp e

j ( )2π ( )fd cos θp + ∑
q = 1

Q

aq tq t + ϕb cos θp

s ( t - τp ) + z͂b ( t )
(12),

where z͂b ( t ) is the time domain circularly symmetric complex 
Gaussian (CSCG) noise of the b-th antenna and it follows 
CN (0,σ2 ) at a time instant.

To separate the multi-path effect, the receive beamforming is 
implemented by a spatial matched filter. The corresponding 
steering vector of the b-th antenna is designed as follows.

ωb (θ ) = ejϕb cos θ,   b ∈ IB (13).
After scanning all possible angles, only U branches receive 

the desired signal. We assume the interested angles are in the 
set Φ = { φu|u ∈ IU }. In addition, the one-to-one mapping func‑
tion is defined as u = ϖ ( p ), u ∈ IU, where the index p maps to 
the identified path u. Therefore, the received signal from the 
angle φu is represented by:

▲ Figure 2. Difference of the delay-Doppler domain channel matrix ΔHk,l [ k',l'] meshes with the highest order of the Doppler rate Q=2, 
where the values of a2 are all set as 49×108 Hz/s2; the values of a1 in (a), 
(b), (c), and (d) are set as 49 Hz/s, 490 Hz/s, 4 900 Hz/s, and 49×108 Hz/s, 

respectively
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ru ( t ) = 1
B ∑

b = 0

B - 1
ω∗

b (φu )rb ( t ) =

βp e
j2π ( )fd cos θp + ∑

q = 1

Q

aq tq t

s ( t - τp ) + zu ( t ) +
1
B ∑

b = 0

B - 1 ∑
ϖ ( p') ≠ u

βp' e
j2π ( )fd cos θp' + ∑

q = 1

Q

aq tq t × ejϕb( )cos θp' - cos φu (14),

where
zu ( t ) = 1

B ∑
b = 0

B - 1
ω∗

b (φu ) z͂b ( t ),   u ∈ IU (15).

With the arrangement of a large-scale antenna array, the in‑
terference of the identified branch can be ignored and was 
also proved in our previous work[11]. Then the received signal 
of the u-th identified branch can be expressed as:

ru ( t ) ≈  βu e
j2π ( )νu + ∑

q = 1

Q

aq tq t

s ( t - τu ) + zu ( t ) (16),
where βu = βp, τu = τp, νu = fd cos φu, and u = ϖ ( p ) is the 
Doppler shift of the u-th identified branch.
4 Doppler Rate Estimation

In this section, the proposed Doppler rate estimation scheme 
is introduced to the system with the first-order and the second-
order Doppler rate. Then the generalized Doppler rate estima‑
tion scheme that applies to the system with an arbitrary-order 
Doppler rate is illustrated. Finally, the Doppler rate mitigation 
scheme through precoding is demonstrated.
4.1 First-Order Doppler Rate

For the system only with the first-order Doppler rate, i.e., Q =
1, the received samples of the u-th identified branch can be rep‑
resented by:

ru (n ) = βu e
j2π ( )ku

MN n + a1
( MΔf ) 2 n2

s (n - lu )
(17),

where ku = νu NT ∈ R and lu =
ë ûτu MΔf + 0.5 .  After the ISFFT and 
the Heisenberg transform, the time do‑
main linear frequency modulated se‑
quence s (n ) is sent with the length 
N0 = MN - 1. The estimation of the 
Doppler rate conducts as follows.

1) Calculate the instantaneous auto‑
correlation of the r∗

u (n ):
Ar (n ) = r∗

u (n ) ru (n + η0 ) =
|| βu

2
e

j2π ( )ku

MN η0 + a1
( MΔf ) 2 (d20 + 2η0n ) (18),

where η0 ∈ (0,N0 ) is a constant, n ∈ [-M0,M0 - η0 ], and M0 =
(N0 - 1) 2.

2) Calculate the fourth-order moment Fr (η1 ):

Fr (η1 ) = ∑
n = N1

N2
A∗

r (n ) Ar (n + η1 ) = || βu

4
e

j2π 2a1 η0 η1
( MΔf ) 2 (19),

where η1 ∈ [-(N0 - η0 - 1), N0 - η0 - 1 ], N1 = max {-M0,-
M0 - η1 }, and N2 = min { M0 - η0,M0 - η0 - η1 }.

3) Calculate the forth-order moment of s (n ) to obtain Fs (η1 ). 
The calculation of the forth-order moment of s (n ) follows  
Eq. (19).

4) Calculate the ratio between Fr (η1 ) and Fs (η1 ):

ξ (η1 ) =
ì

í

î

ï
ïï
ï

ï
ïï
ï

Fr (η1 )
Fs (η1 ) ,      Fs (η1 ) ≠ 0 and η1 ≠ 0
ξ (η1 - 1) + ξ (η1 + 1)

2 ,   otherwise
(20).

5) Perform fast Fourier transform on ξ (η1 ):

Ξ( l̄ ) = ∑
η1 = -(N0 - η0 - 1)

N0 - η0 - 1
ξ (η1 )e- j

2πη1 l̄
2(N0 - η0 ) - 1 , 

l̄ ∈ [-(N0 - η0 - 1),(N0 - η0 - 1) ] (21).
6) Maximize Ξ( l̄ ). Find the value of l̄ that maximizes Ξ( l̄ ) 

and then estimate the first-order Doppler rate a1 as:
â1 = ( MΔf ) 2

2η0 (2N0 - 2η0 - 1) argmax
l̄

|Ξ( l̄ )| (22).

4.2 Second-Order Doppler Rate
For the system with the second-order Doppler rate, i.e. Q = 2, 

LFMsequence OTFSdemodulation OTFSmodulation Channel

Pathidentifi‑cation

Doppler rate estima‑tion

………
LFM: linear frequency modulation     OTFS: orthogonal time frequency space

Figure 3. Diagram of the proposed scheme to estimate the Doppler rate in the first frame
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the received samples can be represented by

ru (n ) = βu e
j2π ( )ku

MN n + a1
( MΔf ) 2 n2 + a2

( MΔf ) 3 n3

s (n - lu ) (23).
To cancel the influence of Doppler rates, the designed scheme 

first estimates the second-order Doppler rate. Then, the effect of 
the second-order Doppler rate is removed from the received 
samples. Next, the first-order Doppler rate is estimated and then 
removed. Based on the estimation of the first-order Doppler rate, 
the second-order Doppler rate is calculated as follows.

1) Calculate the eighth-order moment Er (η2 ):

Er (η2 ) = Fr (η1 )F ∗
r (η1 + η2 ) = || βu

8
e

j2π 6a2 η0 η1 η2
( MΔf ) 3 (24),

where η2 ∈ [-(N0 - η0 - η1 - 1),N0 - η0 - η1 - 1 ].
2) Calculate the eighth-order moment Es (η2 ). The calcula‑

tion of the eighth-order moment of s (n ) follows Eq. (27).
3) Calculate the ratio between Er (η2 ) and Es (η2 ):

ξ (η2 ) =
ì

í

î

ï
ïï
ï

ï
ïï
ï

Er (η2 )
Es (η2 ) ,      Es (η1 ) ≠ 0 and η2 ≠ 0
ξ (η2 - 1) + ξ (η2 + 1)

2 ,   otherwise 
(25).

4) Perform the fast Fourier transform on ξ (η2 ):

Ξ( l͂ ) = ∑
η2 = -(N0 - η0 - η1 - 1)

N0 - η0 - η1 - 1
ξ (η2 )e- j

2πη2 l͂
2(N0 - η0 - η1 ) - 1 ,  

l̄ ∈ [-(N0 - η0 - η1 - 1),(N0 - η0 - η1 - 1) ] (26).
5) Maximize |Ξ( l͂ )|. Find the value of l͂ that maximizes |Ξ( l͂ )| 

and then estimate the second-order Doppler rate a2 as:
â2 = ( MΔf ) 3

6η0 η1 (2N0 - 2η0 - 2η1 - 1) argmax
l͂

|Ξ( l͂ )| (27).

4.3 Extension to Higher-Order Doppler Rate
We can extend the proposed Doppler rate estimation scheme 

to a system with an arbitrary-order Doppler rate. For a system 
with Q-th order Doppler rate, the received samples can be ex‑
pressed as:

ru (n ) = βu e
j2π ( )ku

MN n + ∑
q = 1

Q

aq ( )n
MΔf

q + 1

s (n - lu ) (28).
The estimation of the Doppler rate is conducted with a succes‑

sive interference pattern as follows. The 2Q + 1-order moment of 
the received samples is calculated first. Then the ratio between 
the 2Q + 1-order moment of the received samples and the 2Q + 1-
order moment of the sent samples is calculated. Next, the fast 
Fourier transform is utilized to transform the ratio into the fre‑

quency domain and obtain the spectrum of the moment. Finally, 
the spectrum is maximized and the corresponding estimation of 
the Q-th order Doppler rate aQ is calculated. Once the Q-th or‑
der Doppler rate is estimated, it is removed from the received 
samples， and the (Q - 1)-th order Doppler rate is calculated 
and then cancelled. The estimation and the compensation pro‑
cesses continue until the first-order Doppler rate is mitigated. 
The proposed Doppler rate scheme is unbiased, which can be 
proved based on the fact that the noise is zero mean CSCG and 
the Fourier transform does not change the mean value.
4.4 Precoding Scheme

For the frames that transmit the information-bearing symbols, 
precoding is performed in the delay-Doppler domain to mitigate 
the effect of the Doppler rate.

From Ref. [4], the time-domain transmitted symbol vector s 
can be expressed as:
s = (F H

N ⊗ IM )xD (29),
where xD is the delay-Doppler domain transmit vector and the 
operation ⊗ denotes the Kronecker product. To mitigate the ef‑
fect of the Doppler rate, time-domain precoding is carried out as:
Ps = P (F H

N ⊗ IM )xD (30),
where P = diag { p } and the n-th element of the vector is pn =
e

- j2π ( )∑
q = 1

Q

âq ( n
MΔf

) q + 1

, n ∈ IMN. Since the information-bearing sym‑
bols are transmitted in the delay-Doppler domain, the precoding 
matrix is designed in the delay-Doppler domain as 
P (F H

N ⊗ IM ).
5 Simulation Results

In this section, we evaluate the performance from the normal‑
ized mean squared error (NMSE) of the Doppler rate estimation 
and the bit error rate (BER) of the proposed scheme. The NMSE 
of the q-th order Doppler rate is defined as 10 log10(|aq -
âq|2 /a2

q ) . We set N = 32, M = 64, Δf = 150 kHz, the moving 
speed v = 1 Ma, the carrier frequency fc = 4 GHz, and the 
modulation scheme is 4 Quadrature Amplitude Modulation 
(QAM). The delay indices of the channel is [ 0,1,2,3,4,5 ] and 
the power of each tap is uniformly distributed. The Doppler 
shift of the channel is generated by fd cos θp where the angle of 
arrival (AoA) of each path θp is independently uniformly dis‑
tributed in [ 0,2π). Furthermore, the channel response of all 
the antenna elements are normalized as 1. Moreover, the re‑
ceive beamforming is designed with an interval of one degree. 
For the error performance, the channel estimation in Ref. [11] 
and the data detection scheme in Ref. [12] are adopted. The 
value of the Doppler rate is set as large as possible and such 
setting is suitable especially under the take-off and the land‑
ing process of high-speed aircrafts.
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In Fig. 4, we demonstrate the error performance by introduc‑
ing the different values of the Doppler rate. In addition, the BER 
is evaluated without the estimation and compensation of the 
Doppler rate. We can obtain that the error performance when 
a1 ≤ 49 × 105 Hz/s is nearly the same as that without the intro‑
duction of the Doppler rate. However, the error performance de‑
teriorates sharply when a1 ≥ 49 × 105 Hz/s. Especially, the sys‑
tem cannot even normally work when a1 = 49 × 108 Hz/s. The 
reason can be explained by comparing the maximum Doppler 
shift of one OTFS frame Δf and the Doppler shift increment from 
the Doppler rate ΔD = a1 NT . When a1 = 49 × 105 Hz/s, the 
increment of the Doppler shift is ΔD = 49 × 105 × 32150 × 103 ≈ 1 045 Hz 
< 15 × 103 Hz= Δf. Though without the estimation and the com‑
pensation of the Doppler rate, the effect of the Doppler rate can 
be mitigated in the channel estimation. Thus, the error perfor‑
mance can keep the same as that without the Doppler rate. How‑
ever, the increment of the Doppler shift can arrive at the value 
ΔD = 49 × 106 × 32150 × 103 ≈ 1 045 kHz> Δf. The Doppler rate cannot be 
mitigated from the channel estimation deteriorating the error per‑
formance. Therefore, the estimation and the compensation of the 
Doppler rate are necessary to guarantee the reliable communica‑
tion under such setting.

In Fig. 5, we evaluate the Doppler rate estimation accuracy 
under Q = 2, a2 = 49 × 1012 Hz/s2, and a1 = 49 × 108 Hz/s. 
We can see that the estimation accuracy of both the second or‑
der Doppler rate and the first order Doppler rate improves with 
the increasing number of the receive antennas. In addition, the 
estimation accuracy of the first order Doppler rate under Q = 1 
outperforms that under Q = 2. This phenomenon is caused by 
the proposed successive interference cancellation pattern for the 
high order Doppler rate.

In Fig. 6, we demonstrate the error performance of the pro‑
posed transceiver under Q = 1 and Q = 2. In addition, 
η0 = 400 and a1 = 49 × 108 Hz/s for Q = 1; η0 = 800, η1 =
400, a2 = 49 × 1012 Hz/s2, and a1 = 49 × 108 Hz/s for Q = 2. 
We can see that the proposed transceiver can achieve the same 
error performance as that with the perfect Doppler rate compen‑
sation, indicating the proposed transceiver can effectively miti‑
gate the Doppler rate effect. In addition, the system cannot even 
normally work without compensating the Doppler rate, which il‑

NMSE: normalized mean squared error     SNR: signal-to-noise ratio
▲Figure 5. NMSE of the Doppler rate is evaluated under the four val⁃
ues of the receive antenna, namely 32, 64, 128, and 256. The highest or⁃
der of the Doppler rate is 2, i.e., Q = 2, a1 = 49 × 108 Hz/s and a2 = 49 ×
1012 Hz/s2. We can see that the performance of the proposed transceiver 

improves with the increasing number of the receive antenna

B=32， a2
B=64， a2
B=128， a2
B=256， a2
B=32， a1
B=64， a1
B=128， a1
B=256， a1
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▲Figure 4. BER is evaluated under the different values of the Doppler 
rate and without the Doppler rate effect compensation, where the re⁃
sults demonstrate that the error performance deteriorates as the Dop⁃

pler rate increases

BER: bit error rate     SNR: signal-to-noise ratio
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▲Figure 6. BER is evaluated under the three schemes and the two val⁃
ues of the highest order of the Doppler rate. We can see that the pro⁃
posed scheme can achieve nearly the same performance as the perfect 
Doppler rate compensation under both the first order and the second or⁃

der Doppler rate conditions
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lustrates the significance of estimating the Doppler rate effect.
6 Conclusions

In this paper, we first introduce the effect of the Doppler rate 
in the OTFS system and derive the delay-Doppler domain input-
output relation. Then the Doppler rate effect is characterized by 
utilizing the first mean value theorem for definite integrals to 
avoid the complicated integrals. Aiming at mitigating the Dop‑
pler rate effect, the joint frame transceiver scheme, where the 
Doppler rate is estimated in the first frame and then the effect is 
removed in the subsequent data frames, is designed by arrang‑
ing a large-scale antenna array at the receiver. Simulation re‑
sults demonstrate the efficiency of the proposed scheme.
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