无线传感器网络的体系结构

发布时间:2005-07-28 作者:纪阳,张平

基金项目:国家自然科学基金项目(60432010)

    目前在无线通信领域和电子领域的进步促进了低成本、低功耗、多功能无线传感器的发展。这些无线传感器体积小,并具有感知、数据处理和短距离通信的能力。与传统的传感器相比,现在的无线传感器网络具有明显的进步。

    无线传感器网络由大量高密度分布的处于被观测对象内部或周围的传感器节点组成。其节点不需要预先安装或预先决定位置,这样提高了动态随机部署于不可达或危险地域的可行性。

    传感器网络具有广泛的应用前景,范围涵盖医疗、军事和家庭等很多领域。例如,传感器网络快速部署、自组织和容错特性使其可以在军事指挥、控制、通信、计算、智能、监测、勘测方面起到不可替代的作用。在医疗领域,传感器网络可以部署用来监测病人并辅助残障病人。其他商业应用还包括跟踪产品质量、监测危险地域等[1—3]。

    无线传感器网络的实现需要自组织(Ad hoc)网络技术。尽管已有许多Ad hoc网络的协议和算法,但并不能够满足传感器网络的需求。具体来说,相对于一般意义上的自组织网络,传感器网络有以下一些特色,需要在体系结构的设计中特殊考虑[2]。

    (1)无线传感器网络中的节点数目高出Ad hoc网络节点数目几个数量级,这就对传感器网络的可扩展性提出了要求。由于传感器节点的数目多开销大,传感器网络通常不具备全球唯一的地址标识,这使得传感器网络的网络层和传输层相对于一般网络而言,有很大的简化。此外,由于传感器网络节点众多,因此,单个节点的价格对于整个传感器网络的成本而言非常重要。

    (2)自组织传感器网络最大的特点就是能量受限。传感器节点受环境的限制,通常由电量有限且不可更换的电池供电,所以在考虑传感器网络体系结构以及各层协议设计时,节能是设计的主要考虑目标之一。

    (3)由于传感器网络应用的环境的特殊性、无线信道不稳定以及能源受限的特点,传感器网络节点受损的概率远大于传统网络节点,因此自组织网络的健壮性保障是必须的以保证部分传感器网络的损坏不会影响到全局任务的进行。

    (4)传感器节点高密度部署,网络拓扑结构变化快,对于拓扑结构的维护也提出了挑战。

    上述这些特点使得无线传感器网络有别于传统的自组织网络,并在当前的一些体系结构设计的尝试中得到了突出的表现。

1 传感器网络节点功能结构
    在不同应用中,传感器网络节点的组成不尽相同,但一般都由数据采集、数据处理、数据传输和电源这4部分组成(见图1)。根据具体应用需求,还可能会有定位系统以确定传感节点的位置,有移动单元使得传感器可以在待监测地域中移动,或具有供电装置以从环境中获得必要的能源。此外,还必须有一些应用相关部分,例如,某些传感器节点有可能在深海或者海底,也有可能出现在化学污染或生物污染的地方,这就需要在传感器节点的设计上采用一些特殊的防护措施。

 

2 传感器网络的拓扑结构
    传感器网络节点通常散布于待监测地域。网络中的各个节点具有数据收集和将数据路由到接收器的功能,图2为多次路由将数据传输到接收器的示意图。
接收器可以通过有线网络或卫星与任务管理节点通信。

 

3 传感器网络的通信体系结构
    根据以上特性,传感器网络需要根据用户对网络的需求设计适应自身特点的网络体系结构[4],为网络协议和算法的标准化提供统一的技术规范,使其能够满足用户的需求。

    传感器网络体系结构具有二维结构(如图3所示),即横向的通信协议层和纵向的传感器网络管理面。通信协议层可以划分为物理层、链路层、网络层、传输层、应用层,而网络管理面则可以划分为能耗管理面、移动性管理面以及任务管理面。
管理面的存在主要是用于协调不同层次的功能以求在能耗管理、移动性管理和任务管理方面获得综合考虑的最优设计。

3.1 物理层
    无线传感器网络的传输介质可以是无线、红外或者光介质。例如,在微尘项目中,使用了光介质进行通信。还有使用红外技术的传感器网络,它们都需要在收发双方之间存在视距传输通路。而大量的传感器网络节点基于射频电路,本文主要探讨这类传感器网络。

    无线传感器网络推荐使用免许可证频段(ISM)。在物理层技术选择方面,环境的信号传播特性、物理层技术的能耗是设计的关键问题。传感器网络的典型信道属于近地面信道,其传播损耗因子较大。并且天线高度距离地面越近,其损耗因子就越大,这是传感器网络物理层设计的不利因素。然而无线传感器网络的某些内在特征也有有利于设计的方面,例如,高密度部署的无线传感器网络具有分集特性,可以用来克服阴影效应和路径损耗。目前低功率传感器网络物理层的设计仍然有许多未知领域需要深入探讨。

3.2 数据链路层
    数据链路层负责数据流的多路复用、数据帧检测、媒体接入和差错控制。数据链路层保证了传感器网络内点到点和点到多点的连接。

    (1)媒体接入控制
    在无线多跳Ad hoc网络中,媒体访问控制(MAC)层协议主要负责两个职能。其一是网络结构的建立。因为成千上万个传感器节点高密度地分布于待测地域,MAC层机制需要为数据传输提供有效的通信链路,并为无线通信的多跳传输和网络的自组织特性提供网络组织结构。其二是为传感器节点有效合理地分配资源[5]。

    蓝牙和移动Ad hoc网络可能是最接近传感器网络的现有网络。然而蓝牙采用星形网络拓扑结构,并采用集中式分配的时分复用机制,这对于拓扑结构需要经常调整的无线传感器网络来说并不有利。传统Ad hoc网络的MAC层协议强调在移动条件下提供较好的服务质量(QoS)保证,节电并非其考虑的主要因素,因此,也不能够照搬于无线传感器网络。

    (2)差错控制
    数据链路层的另一个重要功能是传输数据的差错控制。在通信网中有两种重要的差错控制模式分别是前向差错控制(FEC)和自动重传请求(ARQ)。在多跳网络中ARQ的使用由于重传的附加能耗和开销而很少使用。既便是使用FEC方式,也只有低复杂度的循环码被考虑到,而其他的适合传感器网络的差错控制方案仍处在探索阶段。

3.3  网络层
    传感器网络节点高密度地分布于待测环境内或周围(见图2)。在传感器网络节点和接收器节点之间需要特殊的多跳无线路由协议。传统的Ad hoc网络多基于点对点的通信。而为增加路由可达度,并考虑到传感器网络的节点并非很稳定,在传感器节点多数使用广播式通信,路由算法也基于广播方式进行优化。此外,与传统的Ad hoc网络路由技术相比,无线传感器网络的路由算法在设计时需要特别考虑能耗的问题。基于节能的路由有若干种,如最大有效功率(PA)路由算法,即选择总有效功率最大的路由,总有效功率可以通过累加路由上的有效功率得到。最小能量路由算法,该算法选择从传感器节点到接收器传输数据消耗最小能量的路由。基于最小跳数路由:在传感器节点和接收机之间选择最小跳数的节点。以及基于最大最小有效功率节点路由,即算法选择所有路由中最小有效功率最大的路由。传感器网络的网络层设计的设计特色还体现在以数据为中心。在传感器网络中人们只关心某个区域的某个观测指标的值,而不会去关心具体某个节点的观测数据。而传统网络传送的数据是和节点的物理地址联系起来的,以数据为中心的特点要求传感器网络能够脱离传统网络的寻址过程,快速有效的组织起各个节点的信息并融合提取出有用信息直接传送给用户。

3.4  传输层
    传感器网络的计算资源和存储资源都十分有限,而且通常数据传输量并不是很大。这样,对于传感器网络而言,是否需要传输层是一个问题。最为熟知的传输控制协议(TCP)是一个基于全局地址的端到端传输协议,而对于传感器网络而言,TCP设计思想中基于属性的命名对于传感器网络的扩展性并没有太大的必要性,而数据确认机制也需要大量消耗存储器,因此合适于传感器网络的传输层协议会更类似于UDP协议。

4 结束语
    传感器网络的体系结构受应用驱动。传统的传感器的应用方向主要在军事等一些领域。现在越来越多的研究表明,无线传感器网络在民用领域也存在着广阔的应用前景。例如,多种类型的传感器网络可以为移动中的人们提供对周围环境的感知,并通过与移动网络的协同工作来触发状态感知的新业务,从而使人们能够获得更高的效率。显然,这种多传感环境以及与其他无线网络的协同工作将对未来无线传感器网络与其他网络的互通体系结构产生影响[9—11]。

    总的说来,灵活性、容错性、高密度以及快速部署等传感器网络的特征为其带来了许多新的应用。在未来,有许多广阔的应用领域可以使传感器网络成为人们生活中的一个不可缺少的组成部分。实现这些和其他的一些传感器网络的应用需要自组织网络技术。然而,传统Ad hoc网络的技术并不能够完全适应于传感器网络的应用。因此,充分认识和研究传感器网络自组织方式及传感器网络的体系结构,为网络协议和算法的标准化提供理论依据,为设备制造商的实现提供参考,成为目前的紧迫任务。也只有从网络体系结构的研究入手,带动传感器组织方式及通信技术的研究,才能更有力地推动这一具有战略意义的新技术的研究和发展。

5 参考文献
[1] Akyildiz I F, Su W, Sanakarasubramaniam Y, et al. Wireless Sensor Networks: A Survey [J]. Computer Networks, 2002,38(4):393—422.
[2] 赵志峰, 郑少仁. Ad hoc网络体系结构研究. 电信科学, 2001,17(1):14—17.
[3] Savarese C, Rabaey J M, Beutel J. Locationing in Distributed Ad hoc Wireless Sensor Network [A]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Vol 4 [C]. Salt Lake (UT, USA), 2001. Piscataway (NJ, USA): IEEE, 2001.2037—2040.
[4] Shih E,Cho S H,Ickes N, et al. Physical Layer Driven Protocol and Algorithm Design for Energy-Efficient Wireless Sensor Networks [A]. Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM´ 01 [C]. Rome (Italy), 2001. New York (NY, USA): ACM Press, 2001.272—286.
[5] Woo A, Culler D E. A Transmission Control Scheme for Media Access in Sensor Networks [A]. Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM´ 01 [C]. Rome (Italy), 2001. New York (NY, USA): ACM Press, 2001.221—235.
[6] Sohrabi K,Gao J,Ailawadhi V, et al. Protocols for Self-Organization of a Wireless Sensor Network [J]. IEEE Personal Communications, 2000,7(5):16—27.
[7] Rabaey J M,Ammer M J,Da Silva J L Jr, et al. PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking [J]. IEEE Computer, 2000,33(7):42—48.
[8] Intanagonwiwat C, Govindan R, Estrin D. Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks [A]. Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM´ 2000 [C]. Boston (MA, USA), 2000. New York (NY, USA): ACM Press, 2000.56—67.
[9] POTTIE G J. W ireless sensor networks [A]. Proceedings of the IEEE Information Theory Workshop [C]. Killarney (Ireland), 1998. Piscataway (NJ, USA): IEEE Service Center, 1998.139—140.
[10] Pottie G J, Kaiser W J. Wireless Integrated Network Sensors [J]. Communications of the ACM, 2000,43(5):51—58.
[11] Kahn J M,Katz R H, Pister K S J. Next Century Challenges: Mobile Networking for Smart Dust [A]. Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM´ 99 [C]. Seattle (WA, USA), 1999. New York (NY, USA): ACM Press, 1999,271—278.

收稿日期:2005-05-22

 

[摘要] 在对无线传感器应用特征进行分析的基础上,总结了无线传感器体系结构设计的要素,讨论了无线传感器网络的二维体系结构和组网方式。通过与传统Ad hoc网络的对比,归纳了无线传感器网络在各层各面设计的特点。文章认为虽然传统的传感器的应用方向主要在军事领域,但在民用领域也存在着广阔的前景。

[关键词] 无线传感器网络;体系结构;自组织网络

[Abstract] Based on the analysis of application characteristics of the wireless sensor, the main factors for architecture design of wireless sensor networks are summarized, and the two-dimension system architecture and networking schemes of wireless sensor networks are discussed. The characteristics of the layered and planed design of wireless sensor networks are also elaborated by contrasting them with traditional Ad hoc networks. It is concluded that traditional sensors that are mainly applied in the military field have great application potential in the civil area.

[Keywords] wireless sensor network; architecture; Ad hoc network