超移动宽带(UMB)无线接入技术是无线通讯技术的革新,可以提供行业领先的高速数据吞吐量、低延时和高服务质量(QoS),为用户带来增强的移动宽带体验。UMB技术在物理空中接口和较上层采用自下而上的设计,支持带宽密集的移动业务和并发的VoIP和数据业务,具有更大的灵活性。UMB网络设计的目标是:
采用UMB技术,易于对网络进行扩展,服务于不同场景下的基站,满足不同覆盖率和容量的需求。UMB网络采用分布式网络架构使负载分散到各个网元,从而简化了总体设计。利用标准IP元件,运营商易于进行网络扩展,减少时间和成本。UMB网络架构的主要特性大致总结如下:
1 UMB:扁平化的网络架构
基于扁平化网络架构的UMB解决方案与传统的分层架构明显不同,后者定义了多层的控制和互连平台。在传统的分层架构中,接入终端(AT)通过唯一的空中接口协议栈与多个基站(BS)通信。称为基站控制器(BSC)的集中控制实体保持各个BS之间协议状态的协调[1-3]。
采用扁平架构的UMB网络不需要BSC这样的集中控制实体,如图1所示,相当于传统分层架构中基站的UMB演进基站(eBS)将传统BS、BSC的功能以及分组数据服务节点(PDSN)的某些功能融于一身,使网络部署更为简单。由于建网所需的元件数量减少,网络变得更加可靠、灵活、易于部署,而且运营成本更低廉。eBS间的相互影响大大减少,使eBS接口更为简单,从而促进了多厂商的互通。
传统分层的移动宽带无线接入网络依靠多种节点提供用户流量服务,如BS、BSC、PDSN和移动IP归属代理;而eBS可直接与Internet连接,提供服务。因而可降低延时、减少投资和维护成本,同时降低节点间的相互影响,以提供端到端的QoS。
1.1 UMB汇聚接入网络
UMB网络架构的一个核心概念是汇聚接入网络(CAN),通过它无缝集成UMB与现有的3G核心网。UMB CAN的范例如图2所示,该网络与CDMA2000 1x EV-DO网络实现互通。
UMB无线接入网的中心是eBS,相当于目前3G BS和BSC的组合。eBS连接到公共的接入网关(AGW),AGW提供了AT到分组数据网的IP连接点。
1.2 UMB网元
UMB网络主要网元定义如下。
1.2.1 接入终端
AT是为用户提供IP数据连接的用户设备,一般是移动电话、个人数字助理(PDA)或便携式电脑。
1.2.2 演进基站
eBS提供AT进行无线接入网连接所采用的空中(OTA)信令和用户数据传输。eBS的其它功能包括:
eBS还提供以下一些重要功能:
此外,eBS还可以查看用户的IP分组,并且可以优化OTA调度或者执行其他增殖服务功能。
1.2.3 接入网关
AGW提供网络的用户IP连接点,即AGW是移动终端的第一跳路由器。AGW运行层3以上的业务,包括即时处理(Hot-lining)、策略实施等业务。
1.2.4 信令无线网络控制器
在CAN中,信令无线网络控制器(SRNC)维护AT的无线接入特定信息、会话参考信息(协商空中接口上下文的会话存储点),支持空闲态管理,具有在AT空闲时提供寻呼控制功能,还负责AT的接入认证。SRNC功能可由eBS提供,或位于独立的实体中。
1.2.5 认证、鉴权和计费功能
认证、鉴权和计费(AAA)功能实体提供与AT使用网络资源相关的认证、鉴权和计费功能。
1.2.6 归属代理
归属代理(HA)用于提供在3GPP2分组数据网络中AT的移动解决方案,以及演进网络中不同技术支持的网络间的移动。
1.2.7 分组数据服务节点
PDSN是在现有EV-DO或CDMA2000 1X分组数据网络中提供用户IP连接点的节点。
1.2.8 策略和计费规则功能
策略和计费规则功能(PCRF)实体制订了AGW的规则,目标是:
2 移动管理
2.1 主要功能和概念
在移动管理方面,UMB受益于高度创新的网络设计,可实现更快速的切换、网络灵活的扩展性和真正的分布式接入设计。
采用UMB网络架构,运营商可以实行完全移动管理,并取得最佳服务质量。UMB的移动管理有以下一些主要概念。
2.1.1 多路由
多路由位于UMB网络架构的核心。UMB AT包含了对应于每个基站的独立的空中接口协议栈,每个协议栈都称为一条路由。AT还包含了一个由拥有AT路由的所有eBS组成的路由集,该多路由采用不同的eBS来表示AT包含的多个路由。一个重要特性是每个eBS只有在加入到路由集后才可以被设置为服务eBS。一个路由集在任意时刻可以最少包含6条路由。如果AT是空闲的,它只有一条SRNC路由。
而且,每个eBS包含与每条路由相关的连接状态。该连接状态包括参数值以及有助于保持eBS和AT间连接的算法状态,例如发射/接收缓冲器、RLP中提供上层分组可靠传送的序列号、不同流量授权的QoS和授权的媒体接入控制(MAC)资源。
由于AT包含与每个eBS不同的路由,而连接状态为eBS的本地状态,当AT从eBS传递到另一个eBS时,两个eBS之间不传送连接状态信息。这样,eBS之间信令的复杂性就得以大幅度降低。
2.1.2 公共会话
尽管每个eBS拥有独立的路由,所有eBS与AT却共享一个公共会话,定义了AT和eBS协商和存储的协议类型和协议属性集。
2.1.3 个体
会话由一个或多个个体组成。个体定义了通信期间AT和eBS之间采用的协议类型和属性。当AT和路由集中所有eBS之间的会话是公共会话时,每个eBS单独协商一个应用于其路由的个体。
一个eBS所协商的个体可以为另一个eBS所采用,而无需进行任何新的协商。这样,在路由集中增加新的eBS所需的时间得以大大减少。主要优点为:
2.1.4 前向链路服务实体
前向链路服务实体是在前向链路提供层1连接的eBS。
2.1.5 反向链路服务实体
它在反向链路提供层1连接eBS。
图3所示为对于会话和个体的eBS和AT之间的联系。eBS和AT共享一个公共会话,而每条路由可选择其自己的个体。
2.2 层1切换机制
根据主要功能和概念的定义,层1切换机制表述如下:
UMB网络设计的差异特性如下:
在一个层1切换中,当AT从源eBS倒换到目标eBS后,到源eBS的路由中可能存在数据分组的残余或碎片,仍需要传送到AT。隧道机制可确保切换时不丢失分组。
隧道机制提供层1eBS交换的无损无缝切换,而不需要BSC或集中控制器。
2.3 层2通信的要点
当eBS加入路由集后需要与AT交换消息来维持连接状态,即使它并非当前路由。层2通信对该过程有促进作用。
在传统网络中,如果一个AT必需与非服务BS通信,则接口需要对BS间的协议进行翻译。例如,将服务BS的OTA协议转换为网络协议。
在UMB网络设计中,路由集中添加了eBS后,eBS和AT之间即建立一个层2通信。采用个体的定义协议和属性,新的eBS 和AT之间建立一种联系。AT和路由集中的一个eBS之间的所有交换通过该eBS和服务eBS之间的层2隧道进行通信。这也称为盲隧道,其上服务eBS盲目地将分组传送到AT,而不经过内容翻译(如AT与eBS之间与报告无线测量相关的事务、QoS请求和授权等)。因此,eBS与AT之间运行的协议与服务eBS提供的传送业务无关,无需翻译eBS间的协议。
2.4 层3切换要点
如上文所述,一个eBS可提供4种功能:FLSE、RLSE、SRNC和DAP。采用这样的网络设计,无需将这些功能指定到单个eBS,而路由集中不同的eBS可为AT和网络间的给定连接提供任意上述4种功能。
AGW可用作AT的层3连接点。AGW将指定到AT的分组发送到提供DAP功能的eBS。如果将DPA功能分配给eBS,则DAP eBS和AGW建立在两者间绑定的代理移动IP(PMIP)。
在层1交换和切换时,如果DAP eBS不同于新的FLSE eBS,当AGW发送指定到AT的分组时,网络的设计使DAP eBS可以采用层3隧道将分组转发到FLSE eBS。
层1交换可触发AT向当前作为FLSE的eBS发送DAP移动请求。尽管DAP和FLSE最好位于相同的eBS,但是,我们并不希望过于频繁地移动DAP功能,因为移动会造成DAP和AGW间更新负载的绑定,同时需要移动会话参考eBS。为避免这种情况,eBS通过对有关DAP移动请求频率的属性进行规定来引导AT。
网络的设计实现了DAP移动或层3切换从层1切换中去耦合,从而使1层切换的发生频率高于DAP移动。
2.5 AGW间切换
总的来说,网络采用Mesh拓扑结构,若干eBS连接到单个AGW。相同路由集中的eBS应连接到相同的AGW。当路由集中增加的eBS连接到不同的AGW时,发生AGW间的切换。
AGW间切换如eBS间切换一样轻松,不会发生数据中断。AGW间不需要接口。无缝AGW间切换采用层2隧道机制,以“中断前先建立”的模式实现,如图4所示。
对于一个AGW间切换,不同AGW下相邻eBS间建立层2隧道。在AGW间切换过程中,AT由一个DAP eBS提供,短期内eBS-AGW对间包含两条PMIP隧道。此间,AT保持两个AGW的两个IP接口处于切换状态。一旦AT和目标AGW间的通信稳定建立,路由集将拥有新的DAP eBS,而目标AGW将连接新的PMIP。
2.6 系统间切换
UMB网络允许进行无缝系统间切换。例如,UMB和EV-DO网络间可进行切换,而不会发生业务中断。
对于一个系统间切换,双模AT需协商一个EV-DO会话,建立一个PPP连接,并通过在AT和EV-DO无线接入网间建立链路层隧道支持,从而在UMB安装一个TFT。双模AT通过离调过程,监视EV-DO和UMB网络无线接口上的信号,以进行1层切换。AGW可采用PMIP或客户端移动IP建立与归属代理的连接,以进行3层切换。
2.7 寻呼设计和功能
UMB网络设计中,寻呼功能更为简单和轻便。不同于传统的中心节点,基于BSC的寻呼的寻呼区为AT所有,SRNC通过单一的eBS追踪AT的注册来维护该功能。此过程描述如下:
(1)当AT从连接态转换到空闲态时,除了SRNC路由外,删除所有路由。AT执行SRNC远程注册,包括AT从其注册的最终地点移动了一个集距离以上时的重注册。在这情况下,AT建立具有本地eBS的路由,将注册信息传递给会话参考(SR)eBS。
(2)如果分组到达时AT处于空闲态,DAP eBS向SR eBS发送寻呼请求,然后,SR eBS将该寻呼请求发送到最后注册的eBS。SR eBS的寻呼要求最后注册的eBS将寻呼请求传递到给定半径范围内的相邻的eBS。换言之,SR eBS还通过将请求传递到最后注册的eBS,从而为AT提供主要的寻呼支持。这样,与SR eBS仅追踪一个eBS即AT注册的最后的eBS的方式相比,寻呼功能变得更为简单。
3 结束语
扁平化架构的UMB解决方案是一种简化的网络设计,为带宽密集业务提供了卓越的移动管理支持。采用扁平化的网络架构,不需要集中BSC等网元,大大减少了互通所需的网络节点数量。
无论是AT的eBS间、AGW间还是系统间转换,UMB CAN都可实现无缝和快速的切换,同时最大限度地减少开销。因此,合理的系统设计可为包括延时敏感应用在内的各种应用提供QoS。
网络架构的设计尽可能地保持了无线接入网和核心网间接口的简单。例如,避免了eBS间的连接态的协调或传送,以及避免了与另一个eBS连接的分组进行翻译,因此大大简化了eBS间接口。
这样还有助于运营商随时对UMB网络进行部署和扩展,并将促进多厂商的互通。
4 参考文献
[1] 3GPP2 C.S0084-0 v 2.0. Ultra Mobile BroadbandTM (UMBTM) air interface specification [S]. 2007.
[2] 3GPP2 A.S0020. Interoperability Specification (IOS) for Ultra Mobile Broadband (UMB) radio access network interfaces [S]. 2007.
[3] Robust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed [R]. RFC 3095. 2001.
收稿日期:2008-02-04
[摘要] 超移动宽带(UMB)无线接入技术能以非常高的速率实现IP分组的有效无线传送,同时,即使在小区边缘,也可提供无缝移动和最佳的服务质量(QoS),而不会降低频率再用。UMB系统利用高度创新的扁平化网络架构,简化了核心网和网络接口,从而易于实现网络扩展。UMB架构的一个主要原则是无缝移动。网络架构的设计是关键所在,有利于实现在UMB网络内和不同技术间的无缝切换。革新性的概念可实现基站间的快速交换,同时最大限度地减少开销和提供简化的网络接口。新的隧道机制提供在数据-链路层(层2)和IP层(层3)的信令交换,实现了跨基站的快速移动。本文探讨了UMB网络架构的主要特性,并对不同架构设计选择进行了深入分析。
[关键词] 超移动宽带;扁平化;网络架构
[Abstract] Ultra Mobile Broadband (UMB) radio-access technology enables efficient wireless transfer of IP packets at very high data rates while providing seamless mobility and best Quality of Service (QoS), even at the cell edges, without lowering frequency re-use. UMB systems benefit from a highly innovative flat network architecture that simplifies the core network and network interfaces, making it easy to scale the network. One of the key principles for UMB architecture is seamless mobility. A major emphasis is placed on the design of network architecture to facilitate seamless handoffs both within the UMB network and across different technologies. Innovative concepts enable fast switching between base stations while minimizing overhead and offering simpler network interfaces. New tunneling mechanisms provide signaling exchange at the data-link layer (layer 2) and IP layer (layer 3) to enable faster mobility across the base stations. This paper discusses key features of UMB network architecture, and provides insight into various architecture design choices.
[Keywords] UMB;flat;network architecture