新一代分组光融合传送网POTN设备架构研究

发布时间:2023-04-13 作者:汤闯,吴小照(中兴通讯)

      分组传送网(PTN)与OTN网络已规模部署,但伴随着移动应用和固定宽带的规模增长,分组传送网PTN与OTN网络在城域内各自独立发展的模式受到挑战。在城域内,移动Backhaul业务/大客户专线业务及宽带数据业务并存,现阶段都采用多种形态的设备来解决业务的承载,给规划投资、运维管理、节能减排等方面带来了较大压力。在这一发展背景下,分组传送网PTN与OTN的融合解决方案——新一代分组光融合传送网络(POTN)应运而生。


POTN业务模型

    新一代分组光融合传送网(POTN)融合了光层(WDM)、OTN和SDH层(可选)、分组传送层(以太网/MPLS-TP)的网络功能,具有对TDM(ODUk)、分组(MPLS-TP和以太网)的交换调度,并支持多层间的层间适配和映射复用,实现对分组、OTN、SDH(可选)等各类业务的统一和灵活传送功能,并具备传送特征的OAM、保护和管理功能的网络。

    在ITU-T G.798.1 Appendix IV和CCSA《分组增强型光传送网总体技术要求》标准中均对POTN的网络分层结构进行了定义,两个标准中均定义了客户业务通过ETH到OTN、MPLS-TP到OTN、SDH到OTN的不同的分层架构的处理方式(见图1)。

    CCSA定义的POTN网络分层架构相对ITU-T定义的标准分层架构,有如下优化:

    ● 当分组传送层采用以太网技术时,G.798.1包括S-EC(PB)和B-EC(PBB)两种技术,但是在中国运营商网络中,无PBB的应用,因此进行了简化,不采用B-EC(PBB)技术。

    ● SDH+OTN:SDH功能(Sm、Sn、MS、RS)为可选。

    考虑到多层优化、成本、智能等多方面的需求,结合应用场景,POTN设备架构可进一步优化,更加贴近网络的发展需求,其中CES/L2VPN、IP、L1业务的封装路径分别优化为:

    ● CES/L2VPN-PW-LSP-ODU-OTU-OCH/OMS;

    ● IP-VPN-LSP-ODU-OTU- OCH/OMS;

    ● L1-ODU-OTU- OCH/OMS。


POTN转发平面架构

    根据POTN设备的分层架构,可以细化POTN设备转发平面的系统方案——POTN的转发平面由统一信元交换矩阵为内核,提供Packet和OTUk等多种业务接口类型,支持任意比例的Packet和OTUk的业务混合传送功能(见图2)。


POTN转发平面的统一信元交换

    在POTN转发平面交换系统的传统设计思路中,存在TDM(ODUk)/Packet双平面交换系统设计。双平面交换系统虽然设计简单,易于实现,但分组及TDM(ODUk)业务通过不同交换平面,业务组织调度非常不灵活,可扩展性差,存在设备功耗大、OPEX高等缺陷。

    统一信元交换的系统设计业务调度灵活、可扩展性高,可以实现TDM(ODUk)业务及分组业务任意比例混合接入,组网灵活,且统一交换平面可大幅降低设备功耗和体积,符合绿色节能的理念。

    因此POTN的转发平面需统一信元交换。POTN的统一信元交换矩阵,将完成所有的分组业务及ODUk子波长业务的统一信元交换,实现系统各线卡间业务的无阻交叉,实现任意比例的分组业务和ODUk子波长业务的交换。
为了实现统一信元交换中对于分组业务和ODUk业务的任意比例的混合接入,OIF定义了OPF标准接口,定义了ODUk-to-Packet接口实现任意颗粒ODUk到分组交换网的适配功能,其中SAR技术可以有效保序,并去除分组交换网引入的时延抖动。ODUk-to-Packet接口解决了OTN和PTN业务在统一分组交换网的交叉调度需求,实现100%Packet到100%OTN的任意比例业务的交换。采用OPF标准接口的统一信元交换系统实现超大容量ODUk交叉调度(容量超10Tbps)的同时支持ODU0颗粒的无阻调度,获得更加灵活的调度性能。在使用OPF标准接口时更容易实现交换电路的m+n的保护方案,提升系统的安全可靠性能。因此OPF标准接口为POTN的统一信元交换的转发平面提供标准支持。


POTN转发平面的hybrid线卡

    POTN转发平面有多种类型的管道,其中PTN业务和ODUk子波长业务的传送管道既要能分别处理,还需支持各管道间的相互转换,需具备端到端部署的能力,实现整网的统一配置、统一调度、统一管理、统一运维。

    POTN转发平面可配备线路侧hybrid单板实现PTN和OTN的融合,线路侧出彩色n×OTUk光接口信号。PTN业务和ODUk子波长业务到同一个hybrid线路侧线卡可自由无阻调度,实现100%Packet到100%OTN的任意比例业务的交换,减少线路侧线卡种类和槽位占用。


POTN控制平面架构

    新一代分组化传送网络POTN需要具备向SDN的平滑演进能力。SDN的核心理念是控制与转发分离、控制集中化,网络能力开放化。而POTN从架构上已经实现了控制与转发、应用分离,在POTN上增加控制器及APP应用就可以实现SDN,从而实现网络从封闭到开放性的转变,使得网络更加智能(见图3)。同时对外提供开放的北向接口,通过集中式网管和控制器提升网络智能化、简化多层网络的运维、解决多厂家设备对接协调等问题。

 

    在SDN演进方面,运营商现网部署的PTN设备,可通过网管集中式控制实现存量设备向SDN演进;而对于新建设备,加载SDN控制器,使用标准接口进行集中控制。在集中网管和控制器之上,新增协同层进行统一协同,实现PTN整网的SDN演进。

    SDN控制逻辑集中的特点,使得SDN控制器拥有网络全局拓扑和状态,可实施全局优化,提供网络端到端的部署、保障、检测等手段;同时,SDN控制器可集中控制不同层次的网络,实现网络的多层多域协同与优化,如分组网络与光网络的联合调度,非常适合POTN这种分组和光深度融合的设备。另外通过集中的SDN控制器实现网络资源的统一管理、整合后,可以将网络资源虚拟化,即将大颗粒的POTN资源虚拟成按需的网络分片,通过规范化的北向接口为上层应用提供服务。


    POTN系统架构分为转发、控制和管理三个平面。POTN在转发平面具备统一交换矩阵,支持OPF标准接口,支持hybrid线卡实现不同种类的管道的互相转换;POTN在控制平面具备向SDN的平滑演进能力;再加上管理平面实现图形化管理和运维,构成了完整的POTN系统架构。