Ashwitha NAIKOTI, Ananthanarayanan CHOCKALINGAM
(State Key Laboratory for Novel Software Technology, Nanjing 210023, China)
Abstract: Orthogonal time frequency space (OTFS) modulation is a recently proposed modulation scheme that exhibits robust performance in high-Doppler environments. It is a two-dimensional modulation scheme where information symbols are multiplexed in the delay-Doppler (DD) domain. Also, the channel is viewed in the DD domain where the channel response is sparse and time-invariant for a long time. This simplifies channel estimation in the DD domain. This paper presents an overview of the state-of-the-art approaches in OTFS signal detection and DD channel estimation. We classify the signal detection approaches into three categories, namely, low-complexity linear detection, approximate maximum a posteriori (MAP) detection, and deep neural network (DNN) based detection. Similarly, we classify the DD channel estimation approaches into three categories, namely, separate pilot approach, embedded pilot approach, and superimposed pilot approach. We compile and present an overview of some of the key algorithms under these categories and illustrate their performance and complexity attributes.
Keywords: OTFS modulation; delay-Doppler domain; high-Doppler channels; signal detection; channel estimation